• 제목/요약/키워드: Ingot Forging

검색결과 46건 처리시간 0.022초

대형 Ingot의 Upset 단조기술에 관한 연구 (A Parametric Study for the Upset Forging of Large Ingot)

  • 박승희;유성만;신상엽
    • 소성∙가공
    • /
    • 제8권1호
    • /
    • pp.101-107
    • /
    • 1999
  • The upset forging stage is the initial work in the forging process. It is used to remove the segregation and cavities of the ingot. Specially in handling large sized ingot, an improper upset forging can cause serious surface tearing. However, there is no detail reference for stable upset forging work. To resolve this difficulty, we studied several factors such as upset forging time, temperature varation of ingot, damage, load and stain rate etc., by using the rigid-plastic finite element approach available in the DEFORM code. Numerical simulation results indicated that: the load value of upset forging works shows severe decreasing trend at a certain point, same as strain rate. Also defects were found to be concentrated around the upper and lower portions of the ingot. With these results, we can estimate a guideline for stable upset forging work.

  • PDF

중공 잉곳을 이용한 대형 링 단조품 제조공정 설계 연구 (Process Design on Fabrication of Large Sized Ring by Mandrel Forging of Hollow Cast Ingot)

  • 이승욱;이영선;이명원;이동희;김상식
    • 소성∙가공
    • /
    • 제19권6호
    • /
    • pp.329-336
    • /
    • 2010
  • Ring forging process is more appropriate for high-length and thin walled ring, because it utilizes the forging press and hence does not require heavy-duty ring rolling mill. Although ring forging process is very simple and economic for facilities, the process is not efficient because of multi-forging-step and low material utilization. An effective ring forging process is developed using a hollow ingot. When a hollow ingot is used with a workpiece, the ingot can be forged into a final ring without multi-stage pre-forging process, such as, cogging, upsetting, and piercing, etc.. Finally it has advantages of the material utilization and process improvement because a few reheating and forging process are not necessary to make workpiece for ring forging. The important design variables are the applied plastic deformation energy to eliminate cast structure and make uniform properties. In this study, the mechanical properties after forging of hollow cast ingot were investigated from the experiment using circumferential sectional model. Also, the effects of process variables were studied by FEM simulation on the basis of thermo-visco-plastic constitutive equation. Applied strain is different at each position in length direction because diameter of hollow ingot is different in length direction. The different strain distribution become into a narrow gap by additional plastic deformation during diameter extension process.

대형 크랭크스로우의 예비성형체 양끝단부 재료특성과 단조공정에 관한 연구 (A Study on the Material Properties of Both End Sides of Preform and Forging Process in Large Crank Throw)

  • 김영득;김동영;김동권;김재철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1513-1516
    • /
    • 2003
  • A crank throw, which is one of the crankshaft part for a large diesel engine is manufactured by closed die forging or open die forging. For the purpose of improvement of productivity the open die forging is usually adopted these days. However it has disadvantage of low yield ratio compare to closed die forging. To overcome this problem, the material properties for hot top and bottom zones of ingot are investigated to utilize them to the product and a modified forging process to reduce the material loss of ingot body through forging analysis according to forging factors(a , R, Ø$\sub$B/, Ø$\sub$D/) is suggested.

  • PDF

대형인곳의 업셋-블룸단조에서의 기공 압착 거동 예측 (Prediction of Void Crushing Behavior in Upset & Bloom Forging of Large Ingot)

  • 권일근;김경훈;윤영철;송민철
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.325-328
    • /
    • 2004
  • This paper deals with void crushing behavior by ingot forging process which consists of sequential operations of upset forging and bloom forging. The predicted results of void crushing behavior by the simplified global-local method using F.E. analysis showed that the inherent void at the top region of the ingots remains incompletely crushed even after several forging operations. From the results of the hot upset forging test using the billets with drilled voids, it was found that the bonding efficiency of the void after forging process increases with an increase in deformation, and a decrease of initial diameter of voids.

  • PDF

열간 판재단조시 강괴 내부의 기공폐쇄에 관한 연구 (Study on Internal Void Closure in Slab ingot during Hot Plate Forging)

  • 조종래;김동권;김영득;이부윤
    • 소성∙가공
    • /
    • 제5권1호
    • /
    • pp.18-26
    • /
    • 1996
  • In order to investigate the effect of pre-cooling of ingot on void closure in hot plate forging the internal strain and stress distributions are examined quantitatively by using ABAQUS. Simula-tions are carried out on a large slab ingot having the same temperature and the temperature gradient induced by air-cooling. It is shown that pre-cooling produces little effect on the strain behavior but remarkable effect on the hydrostatic stress at the central zone of ingot. The main factors for crushing micro-voids are the effective strain and the time integral of hydrostatic stress in the region surrounding the voids. Based on regression analysis it was found that the distortion of void can be expressed as a polynomial function of the two factors.

  • PDF

자유형 단조 공정에 의한 Ti-6Al-4V 빌렛 제조기술 (Manufacturing Process of the Ti-6Al-4V Billet by the Open-die Forging)

  • 김국주;최승식;황창률;김종식;염종택;이종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.377-380
    • /
    • 2006
  • Manufacturing process of Ti-6Al-4V alloy billet was investigated with FEM simulation and experimental analysis. Before the breakdown process of Ti-6Al-4V alloy ingot, FEM simulation for the breakdown processes of Ti-6Al-4V alloy ingot was used to calculate the forging load and state variables such as strain, strain rate and temperature. In order to breakdown the ingot structure and make an equiaxed structure billet, two different processes were employed for a VAR/VAR processed Ti-6Al-4V alloy ingot. Firstly, the ingot was cogged in single-phase $\beta$ field at the temperature of $1,100^{\circ}C$. In the process, the coarse and inhomogeneous structure developed by the double melting process was broken down. The second breakdown was performed by upsetting and cogging processes in $\alpha+\beta$ phase field to obtain the microstructure of fine equixed $\alpha$ structure in the matrix of transformed $\beta$. Finally, the mechanical properties of Ti-6Al-4V alloy billet made in this work were compared with those of other billet and ring product.

  • PDF

자유단조 공정 시 내부 기공 거동 예측을 위한 멀티스케일 유한요소해석 연구 (A Study of Multiple Scale FEM Modeling for Prediction of Inner Void Closing Behavior in Open Die Forging Process)

  • 곽은정;강경필;이경훈
    • 소성∙가공
    • /
    • 제21권5호
    • /
    • pp.319-323
    • /
    • 2012
  • In order to predict the internal void closing behavior in open die forging process, multiple scale modeling has been developed and applied. The huge size difference between ingot and inner void makes it almost impossible to simultaneously model the actual loading conditions and the void shape. Multiple scale modeling is designed to integrate macro- and micro- models effectively and efficiently. The void closing behavior was simulated at 39 different locations in a large ingot during upsetting and cogging. The correlation between the closing behavior and variables such as effective plastic strain and maximum compressive strain was studied in order to find an efficient measure for predicting the soundness of the forging.

대형 잉곳의 업셋 단조에서의 기공 압착 거동에 관한 연구 (The Study of void Closing Behavior in Upset Forging of Large Ingot)

  • 이경진;배원병;조종래;김동권;김정태
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.406-409
    • /
    • 2005
  • In the forging operation of large ingot two break-down process are upsetting and cogging. The first purpose of upsetting is to ensure sufficient forging ratio for subsequent cogging operations and consolidate the voids along the centerline. The second purpose is related to improve the physical properties for a final product. Voids which are generated during the casting process can be one of the decisive defects of materials. So it is necessary to know the standard of Judgment for void-closure in upsetting operation. In practical conditions, FEM analysis(DEFORM 2D 8.1) was carried out to decide how much effective strain has influence on void-closure. It is finally suggested that the function consists of the effective strain of analysis data and the area rate of void.

  • PDF

A THREE-DINENSIONAL MEASURING TECHNIQUE APPLIED TO FORGING PRESS MACHINE

  • Xiao, Sun;Shimomoto, Yoichi;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.138-141
    • /
    • 1995
  • This paper describes a 3-dimensional measuring method for cylindrical huge ingot pressed with forging machine. Target ingot we consider here is rotated around a fixed axis during measurement. Using an image processing technique every profile of cross-section is obtained, and 3D image is reconstructed. One method to calibrate the system setting is also presented. Experimental results reveal that the method are applicable and the algorithm is feasible.

  • PDF

Alloy 718의 잉고트 파쇄공정시 재결정거동에 대한 해석 (Assessment of Recrystallization Behavior in Ingot-Breakdown Process of Alloy 718)

  • 염종택;이종수;김정한;김남용;박노광
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.42-45
    • /
    • 2007
  • Recrystallization behavior during ingot-breakdown process of Alloy 718 was investigated with finite element analysis and experimental approaches. In order to analyze microstructural changes during the cogging process of an Alloy 718 ingot, the side-pressing and heat treatment tests were performed at different temperatures and ram speed. From the side-pressing and heat treatment test results, it was found that microstructural changes during hot forging of Alloy 718 ingot greatly influenced on a close interaction between dynamic and static-recrystallization behaviors. A recrystallization model of Alloy 718 was used to predict the complex microstructural variation during continuous heating and forging processes of the cogging, and the predicted grain size and its distribution were compared with the actual cogged Alloy 718 billet.

  • PDF