• Title/Summary/Keyword: Infrared thermography camera(IR camera)

Search Result 24, Processing Time 0.025 seconds

Evaluation of Thermography Camera Using Molded Optical Lens for Medical Applications (몰드성형 광학렌즈를 이용한 의료기기용 열화상카메라 체열진단의 적용도 평가)

  • Ryu, Seong Mi;Kim, Hye-Jeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.8
    • /
    • pp.624-628
    • /
    • 2013
  • With the recent development of less-costly uncooled detector technology, expensive optics are among the remaining significant cost drivers in the thermography camera. As a potential solution to this problem, the fabrication of IR lenses using chalcogenide glass has been studied in recent years. We report on the molding and evaluation of a ultra-precision chalcogenide-glass lens for the thermography camera for body-temperature monitoring. In addition, we fabricated prototype thermography camera using the chalcogenide-glass lens and obtained the thermal image from the camera. In this work, it was found out that thermography camera discerned body-temperature between 20 and $50^{\circ}C$ through the analysis of thermal image. It is confirmed that thermography camera using the chalcogenide-glass lens is applicable to the body-temperature monitoring system.

IR Camera Technique Application for Evaluation of Gas Turbine Blades Covering Integrity (가스터빈의 코팅층 건정성 평가를 위한 적외선 열화상 카메라 기법 활용)

  • Kim J.Y.;Yang D.J.;Choi C.J.;Park S.G.;Ahn Y.S.;Jeong G.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.192-196
    • /
    • 2005
  • Key part of main equipment in a gas turbine may be likely to be damaged due to operation under high temperature, high pressure, high-speed rotation, etc. Accordingly, the cost for maintenance increases and the damaged parts may cause generation to stop. The number of parts for maintenance also increases, but diagnostics technology fur the maintenance actually does not catch up with the demand. Blades are made of precipitation hardening Ni superalloy IN738 and the like for keeping hot strength. The surface of a blade is thermal-sprayed, using powder with main compositions such as Ni, Cr, Al, etc. in order to inhibit hot oxidation. Conventional regular maintenance of the coating layer of a blade is made by FPI (Fluorescent Penetrant Inspection) and MTP (Magnetic Particle Testing). Such methods, however, are complicated and take long time and also require much cost. In this study, defect diagnostics were tested for the coating layer of an industrial gas turbine blade, using an infraredthermography camera. Since the infrared thermography method can check a temperature distribution on a wide range of area by means of non-contact, it can advantageously save expenses and time as compared to conventional test methods. For the infrared thermography method, however, thermo-load must be applied onto a tested specimen and it is difficult to quantify the measured data. To solve the problems, this essay includes description about producing a specimen of a gas turbine blade (bucket), applying thermo-load onto the produced specimen, photographing thermography images by an infrared thermography camera, analyzing the thermography images, and pre-testing for analyzing defects on the coating layer of the gas turbine blade.

  • PDF

Monitoring concrete bridge decks using infrared thermography with high speed vehicles

  • Hiasa, Shuhei;Catbas, F. Necati;Matsumoto, Masato;Mitani, Koji
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.3
    • /
    • pp.277-296
    • /
    • 2016
  • There is a need for rapid and objective assessment of concrete bridge decks for maintenance decision making. Infrared Thermography (IRT) has great potential to identify deck delaminations more objectively than routine visual inspections or chain drag tests. In addition, it is possible to collect reliable data rapidly with appropriate IRT cameras attached to vehicles and the data are analyzed effectively. This research compares three infrared cameras with different specifications at different times and speeds for data collection, and explores several factors affecting the utilization of IRT in regards to subsurface damage detection in concrete structures, specifically when the IRT is utilized for high-speed bridge deck inspection at normal driving speeds. These results show that IRT can detect up to 2.54 cm delamination from the concrete surface at any time period. It is observed that nighttime would be the most suitable time frame with less false detections and interferences from the sunlight and less adverse effect due to direct sunlight, making more "noise" for the IRT results. This study also revealed two important factors of camera specifications for high-speed inspection by IRT as shorter integration time and higher pixel resolution.

Tensile Characterization of Ceramic Matrix Composites (CMCs) with Nondestructive Evaluation (NDE) Techniques

  • Kim, Jeongguk;Lee, Joon-Hyun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.190-194
    • /
    • 2003
  • Two different types of nondestructive evaluation (NDE) techniques were employed to investigate the tensile behavior of ceramic matrix composites (CMCs). Two NDE methods, ultrasonic testing (UT) and infrared (IR) thermography, were used to assess defects and/or damage evolution before and during mechanical testing. Prior to tensile testing, a UTC-scan and a xenon flash method were performed to obtain initial defect information in light of UT C-scans and thermal diffusivity maps, respectively. An IR camera was used for in-situ monitoring of progressive damages. The IR camera measured temperature changes during tensile testing. This paper has presented the feasibility of using NDE techniques to interpret structural performance of CMCs.

  • PDF

ON-POWER DETECTION OF PIPE WALL-THINNED DEFECTS USING IR THERMOGRAPHY IN NPPS

  • Kim, Ju Hyun;Yoo, Kwae Hwan;Na, Man Gyun;Kim, Jin Weon;Kim, Kyeong Suk
    • Nuclear Engineering and Technology
    • /
    • v.46 no.2
    • /
    • pp.225-234
    • /
    • 2014
  • Wall-thinned defects caused by accelerated corrosion due to fluid flow in the inner pipe appear in many structures of the secondary systems in nuclear power plants (NPPs) and are a major factor in degrading the integrity of pipes. Wall-thinned defects need to be managed not only when the NPP is under maintenance but also when the NPP is in normal operation. To this end, a test technique was developed in this study to detect such wall-thinned defects based on the temperature difference on the surface of a hot pipe using infrared (IR) thermography and a cooling device. Finite element analysis (FEA) was conducted to examine the tendency and experimental conditions for the cooling experiment. Based on the FEA results, the equipment was configured before the cooling experiment was conducted. The IR camera was then used to detect defects in the inner pipe of the pipe specimen that had artificially induced defects. The IR thermography developed in this study is expected to help resolve the issues related to the limitations of non-destructive inspection techniques that are currently conducted for NPP secondary systems and is expected to be very useful on the NPPs site.

Research on Measurement of Infrared Thermograpphy under High Temperature Condition (고온 환경에서의 적외선 열화상 측정에 관한 연구)

  • Jun-Sik Lee;Jae-Wook Jeon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.57-62
    • /
    • 2024
  • This study conducted a measurement method of high temeprature conditions using infrared termography. All objects emit infrared light, and this emissivity has a significant impact on the temperature measurements of infrared thermal imaging (IR) cameras. In order to measure the temperature more accurately with the IR camera, correction equations were derived by measuring the emissivity according to the temperature change of combustible metals in a high-temperature environment. Two combustible metals, Mg and Al, were used to measure emissivity with changing temperature. Each metal was heated, the emissivity was measured by comparing the temperature with IR camera and thermocouples so that the correlation between temperature and emissivity could be anslyzed. As a result of the experiment, the emissivity of the metals increases as the temperature increased. This can be interpreted as a result of increased radiation emission as the thermal movement of internal metal molecules increased.

Tension Behavior of Nicalon/CAS Ceramic Composites (Nicalon/CAS 세라믹 복합재료의 인장특성)

  • Kim, Jeong-Guk;Kim, Weon-Kyong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.232-237
    • /
    • 2004
  • The tension behavior of Nicalon/CAS glass-ceramic matrix composites was investigated. Infrared (IR) thermography was employed for two different types of $Nicalon^{TM}/CAS$ composites, i.e., cross-ply and unidirectional specimens. During tensile testing, an IR camera was used for in-situ monitoring of progressive damages of $Nicalon^{TM}/CAS$ samples. The IR camera provided the temperature changes during tensile testing. Microstructural characterization using scanning electron microscopy (SEM) was performed to investigate the fracture mechanisms of $Nicalon^{TM}/CAS$ composites. In this investigation, the thermographic NDE technique was used to facilitate a better understanding of the fracture mechanisms of the $Nicalon^{TM}/CAS$ composites during tensile testing.

  • PDF

Multiple crack evaluation on concrete using a line laser thermography scanning system

  • Jang, Keunyoung;An, Yun-Kyu
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.201-207
    • /
    • 2018
  • This paper proposes a line laser thermography scanning (LLTS) system for multiple crack evaluation on a concrete structure, as the core technology for unmanned aerial vehicle-mounted crack inspection. The LLTS system consists of a line shape continuous-wave laser source, an infrared (IR) camera, a control computer and a scanning jig. The line laser generates thermal waves on a target concrete structure, and the IR camera simultaneously measures the corresponding thermal responses. By spatially scanning the LLTS system along a target concrete structure, multiple cracks even in a large scale concrete structure can be effectively visualized and evaluated. Since raw IR data obtained by scanning the LLTS system, however, includes timely- and spatially-varying IR images due to the limited field of view (FOV) of the LLTS system, a novel time-spatial-integrated (TSI) coordinate transform algorithm is developed for precise crack evaluation in a static condition. The proposed system has the following technical advantages: (1) the thermal wave propagation is effectively induced on a concrete structure with low thermal conductivity of approximately 0.8 W/m K; (2) the limited FOV issues can be solved by the TSI coordinate transform; and (3) multiple cracks are able to be visualized and evaluated by normalizing the responses based on phase mapping and spatial derivative processes. The proposed LLTS system is experimentally validated using a concrete specimen with various cracks. The experimental results reveal that the LLTS system successfully visualizes and evaluates multiple cracks without false alarms.

Determination of Lock-in Frequency in Accordance with Material of Target for Defect Measuring by Lock-in Mid-IR Thermography (위상잠금 중파장 적외선 열화상 기법에 의한 결함 계측에서 측정 대상체의 재질에 따른 위상잠금 주파수 연구)

  • Park, Il-Chul;Kim, Sang-Chae;Lee, Hang-Seo;Kim, Han-Sub;Jung, Hyun-Chul;Kim, Kyeong-Suk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.9
    • /
    • pp.44-51
    • /
    • 2019
  • Three types of samples with defects were measured by lock-in med-IR (infrared) thermography with various lock-in frequencies for different materials. The lock-in method can be used to detect defects when an external energy source is applied to the object, the non-uniformity of the incident thermal energy distribution is eliminated, and the camera's measurement cycle is synchronized with the load cycle of the incident energy source. For inspecting samples with defects, results of thermal images are analyzed when three types of materials, i.e., SM45C, STS316L, and AL6061 are tested and three lock-in frequencies, i.e., 0.08, 0.1, and 0.12 Hz are applied. In this study, the optimal lock-in frequencies were determined by comparing the results of each material and lock-in frequency measured using the mid-IR camera.

Tensile Failure Characterization of Composites for Railway Vehicle (철도차량 복합소재의 인장파괴 특성분석)

  • Kim, Jeong-Guk;Kwon, Sung-Tae;Kim, Jung-Seok;Yoon, Hyuk-Jin
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1231-1235
    • /
    • 2010
  • The tensile failure behavior of polymer matrix composite materials was investigated with the aid of a nondestructive evaluation (NDE) technique. The materials, E-glass fiber reinforced epoxy matrix composites, which are applicable to carbody materials in railway vehicles to reduce weight, were used for this investigation. In order to explain stress-strain behavior of polymer matrix composite sample, the infrared thermography technique was employed. A high-speed infrared (IR) camera was used for in-situ monitoring of progressive damages of polymer matrix composite samples during tensile testing. In this investigation, the IR thermography technique was used to facilitate a better understanding of damage evolution, fracture mechanism, and failure mode of polymer matrix composite materials during monotonic loadings.

  • PDF