• 제목/요약/키워드: Infrared light source

검색결과 114건 처리시간 0.033초

DEBRIS DISKS AND THE ZODIACAL LIGHT EXPLORED BY THE AKARI MID-INFRARED ALL-SKY SURVEY

  • Ishihara, Daisuke;Takeuchi, Nami;Kondo, Toru;Kobayashi, Hiroshi;Kaneda, Hidehiro;Inutsuka, Shu-ichiro;Oyabu, Shinki;Nagayama, Takahiro;Fujiwara, Hideaki;Onaka, Takashi
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.67-71
    • /
    • 2017
  • Debris disks are circumstellar dust disks around main-sequence stars. They are important observational clues to understanding the planetary system formation. The zodiacal light is the thermal emission from the dust disk in our Solar system. For a comprehensive understanding of the nature and the evolution of dust disks around main-sequence stars, we try a comparative study of debris disks and the zodiacal light. We search for debris disks using the AKARI mid-infrared all-sky point source catalog. By applying accurate flux estimate of the photospheric emission based on the follow-up near-infrared observations with IRSF, we have improved the detection rate of debris disks. For a detailed study of the structure and grain properties in the zodiacal dust cloud, as an example of dust disks around main-sequence stars, we analyze the AKARI mid-infrared all-sky diffuse maps. As a result of the debris disks search, we found old (>1 Gyr) debris disks which have large excess emission compared to their age, which cannot be explained simply by the conventional steady-state evolution model. From the zodiacal light analysis, we find the possibility that the dust grains trapped in the Earth's resonance orbits have increased by a factor of ~3 in the past ~20 years. Combining these results, we discuss the non-steady processes in debris disks and the zodiacal light.

주파수 영역 확산광 단층촬영 장치를 이용한 광 팬텀 및 인체조직의 광 계수 측정 (Optical Property Measurements of Optical Phantoms and Honan Tissues Using Frequency-Domain Diffuse Optical Tomography)

  • 호동수;권기운;엄기윤;이승덕;김법민
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권2호
    • /
    • pp.229-234
    • /
    • 2007
  • Diffuse optical tomography (DOT) is a relatively new medical imaging modality which uses near infrared light to image large-sized tissues noninvasively. We constructed a frequency-domain DOT system to measure the optical properties of optical phantoms and human tissues. The FD-DOT uses the intensity-modulated infrared light source that illuminates the biological tissues. The phase shift and modulation changes at each detector site are separately processed to measure the optical properties. The absorption and scattering coefficients are separately estimated using inverse algorithms.

근적외선 확산반사 분광법을 이용한 흉터치료 평가 (Evaluation of the Scar Treatment using Near Infrared Diffuse Reflectance Spectroscopy)

  • 장익제;윤종인
    • 대한의용생체공학회:의공학회지
    • /
    • 제37권1호
    • /
    • pp.53-60
    • /
    • 2016
  • Monitoring of dermal collagen is important to assess various scar conditions, and many diagnostic methods have been applied to quantify collagen contents in scar tissue. In this study, Monte Carlo simulation was used to evaluate diffuse reflectance distributions in scar condition by a near-infrared laser source. The results showed that the effective distance of the light source and the detector was 2 mm to monitor the various scar conditions using diffuse reflectance spectroscopy. This study may suggest to the optimal design for a near infrared diffuse reflectance spectroscopy during the scar treatment.

섬광에 의하여 사람 눈에 입사되는 광 에너지 (Irradiant Energy into an Eye from a Flash Light)

  • 박승만;한승오
    • 전기학회논문지
    • /
    • 제65권7호
    • /
    • pp.1225-1230
    • /
    • 2016
  • Since a flash light produces enormous amount of photon energy in short time, not only electro-optic and infrared(EO/IR) systems utilized for Intelligence Surveillance Target Acquisition and reconnaissance(ISTAR) activities but also the people of a combat field can be severely influenced by a high flash light bursting in front of them. The people who bumped into a flash could not escape such enormous amount of photon energy, resulting in being blind temporarily or even permanently. In order to investigate the effect of a high flash source on a human eye, it is essential to know how much photon energy be incident into an eye from the flash source. In this paper, the model of irradiated photon energy to individuals from some flashes is proposed. The proposed irradiated photon energy per unit area of retina is based on taking the situation to be modeled as a simple EO system in front of a flash light. The validity of proposed model was proved by the application of the model to human on the surface of the earth with the well known light source, the Sun. The model of this study can be utilized to simulate the retinal intensity and energy of a flash for various conditions such as the illumination levels, the distance from a flash busting site, luminous intensity and time of a flash.

Study on the Performance of Infrared Thermal Imaging Light Source for Detection of Impact Defects in CFRP Composite Sandwich Panels

  • Park, Hee-Sang;Choi, Man-Yong;Kwon, Koo-Ahn;Park, Jeong-Hak;Choi, Won-Jae;Jung, Hyun-Chul
    • 비파괴검사학회지
    • /
    • 제37권2호
    • /
    • pp.91-98
    • /
    • 2017
  • Recently, composite materials have been mainly used in the main wings, ailerons, and fuselages of aircraft and rotor blades of helicopters. Composite materials used in rapid moving structures are subject to impact by hail, lightning, and bird strike. Such an impact can destroy fiber tissues in the composite materials as well as deform the composite materials, resulting in various problems such as weakened rigidity of the composite structure and penetration of water into tiny cracks. In this study, experiments were conducted using a 2 kW halogen lamp which is most frequently used as a light source, a 2 kW near-infrared lamp, which is used for heating to a high temperature, and a 6 kW xenon flash lamp which emits a large amount of energy for a moment. CFRP composite sandwich panels using Nomex honeycomb core were used as the specimens. Experiments were carried out under impact damages of 1, 4 and 8 J. It was found that the detection of defects was fast when the xenon flash lamp was used. The detection of damaged regions was excellent when the halogen lamp was used. Furthermore, the near-infrared lamp is an effective technology for showing the surface of a test object.

Picosecond Mid-Infrared 3.8 ㎛ MgO:PPLN Optical Parametric Oscillator Laser with High Peak Power

  • Chen, Bing-Yan;Wang, Yu-Heng;Yu, Yong-Ji;Jin, Guang-Yong
    • Current Optics and Photonics
    • /
    • 제5권2호
    • /
    • pp.186-190
    • /
    • 2021
  • In this study, a compact, picosecond, mid-infrared 3.8 ㎛ MgO:PPLN optical parametric oscillator (OPO) laser output with high peak power is realized using a master oscillator power amplifier (MOPA) 1 ㎛ solid-state laser seeded by a picosecond fiber laser as the pump source. The pump source was a 50 MHz and 10 ps fiber seed source. After AOM pulse selection and two-stage solid-state amplification, a 1,064 nm laser output with a repetition frequency of 1-2 MHz, pulse width of 9.5 ps, and a maximum average power of 20 W was achieved. Furthermore, a compact short cavity with a unsynchronized pump is adopted through the design of an OPO cavity structure. When the injection pump power was 15 W and the repetition frequency was 1 MHz, the average output power of idler light was 1.19 W, and the corresponding peak power was 119 kW. The optical conversion efficiency was 7.93%. When the repetition frequency was increased to 2 MHz, the average output power of idler light was 1.63 W, the corresponding peak power was 81.5 kW, and the optical conversion efficiency was 10.87%. At the same time, the output wavelength was measured at 3,806 nm, and the beam quality was MX2 = 3.21 and MY2 = 3.34.

자외선 유도 형광의 사과 성숙도 평가 적용 (UV/blue Light-induced Fluorescence for Assessing Apple Quality)

  • 노현권
    • Journal of Biosystems Engineering
    • /
    • 제35권2호
    • /
    • pp.124-131
    • /
    • 2010
  • Chlorophyll fluorescence has been researched for assessing fruit post-harvest quality and condition. The objective of this preliminary research was to investigate the potential of fluorescence spectroscopy for measuring apple fruit quality. Ultraviolet (UV) and blue light was used as an excitation source for inducing fluorescence in apples. Fluorescence spectra were measured from 'Golden Delicious' (GD) and 'Red Delicious' (RD) apples using a visible/near-infrared spectrometer after one, three, and five minutes of continuous UV/blue light illumination. Standard destructive tests were performed to measure fruit firmness, skin and flesh color, soluble solids and acid content from the apples. Calibration models for each of the three illumination time periods were developed to predict fruit quality indexes. The results showed that fluorescence emission decreased steadily during the first three minutes of UV/blue light illumination and was stable within five minutes. The differences were minimal in the model prediction results based on fluorescence data at one, three or five minutes of illumination. Overall, better predictions were obtained for apple skin chroma and hue and flesh hue with values for the correlation coefficient of validation between 0.80 and 0.90 for both GD and RD. Relatively poor predictions were obtained for fruit firmness, soluble solids content, titrational acid, and flesh chroma. This research has demonstrated that fluorescence spectroscopy is potentially useful for assessing selected quality attributes of apple fruit and further research is needed to improve fluorescence measurements so that better predictions of fruit quality can be achieved.

적외선 열화상 기술을 이용한 복합재료의 결함 검출 정량화 연구 (Study on the Qualitative Defects Detection in Composites by Optical Infrared Thermography)

  • 박희상;최만용;박정학;김원태;최원종
    • 비파괴검사학회지
    • /
    • 제31권2호
    • /
    • pp.150-156
    • /
    • 2011
  • 본 논문에서는 현재 산업 전반에 널리 사용되고 있는 복합재료(탄소섬유강화플라스틱, 유리섬유강화플라스틱)의 비파과검사를 위한 광적외선 열화상기법을 이용한 복합재료 측정 표준기술개발을 위한 결함(인클루젼, 충간결함) 검출 기술을 실험하였다. 결함의 검출률을 높이기 위하여 위상잠금 방법을 활용하였다. 결과는 시험편의 두께에 따라 광원의 조사시간을 늘릴 경우 결함 검출의 확률이 높아진다는 것을 알 수 있다. 하지만 50 mHz 이하의 광원을 가하였을 때에도 결과값이 좋아지지 않는 점은 열확산이 재료 전체에 영향을 미치게 되면 결함 부위가 전체적으로 열평형 상태가 되어 결함 검출이 어려움을 파악할 수 있었다.

A Study on the Optimized Test Condition of Lock-in IR Thermography by Image Processing

  • Cho, Yong-Jin
    • 비파괴검사학회지
    • /
    • 제32권3호
    • /
    • pp.276-283
    • /
    • 2012
  • In this study, it was studies the utilization of LIT(lock-in infrared thermography) which can detect defects in welded parts of ship and offshore structures. Quantitative analysis was used through methods of filtering and texture measurement of image processing techniques to find the optimized experimental condition. We verified reliability in our methods by applying image processing techniques in order to normalize evaluations of comparative images that show phase difference. In addition, low to mid exposure showed good results whereas high exposure did not provide significant results in regards to intensity of light exposure on surface. Lock-in frequency was satisfactory around 0.1 Hz regardless of intensity of light source we had. In addition, having the integration time of thermography camera inversely proportional to intensity of exposed light source during the experiment allowed good outcome of results.

Infrared and Visible Image Fusion Based on NSCT and Deep Learning

  • Feng, Xin
    • Journal of Information Processing Systems
    • /
    • 제14권6호
    • /
    • pp.1405-1419
    • /
    • 2018
  • An image fusion method is proposed on the basis of depth model segmentation to overcome the shortcomings of noise interference and artifacts caused by infrared and visible image fusion. Firstly, the deep Boltzmann machine is used to perform the priori learning of infrared and visible target and background contour, and the depth segmentation model of the contour is constructed. The Split Bregman iterative algorithm is employed to gain the optimal energy segmentation of infrared and visible image contours. Then, the nonsubsampled contourlet transform (NSCT) transform is taken to decompose the source image, and the corresponding rules are used to integrate the coefficients in the light of the segmented background contour. Finally, the NSCT inverse transform is used to reconstruct the fused image. The simulation results of MATLAB indicates that the proposed algorithm can obtain the fusion result of both target and background contours effectively, with a high contrast and noise suppression in subjective evaluation as well as great merits in objective quantitative indicators.