• Title/Summary/Keyword: Infrared images

Search Result 684, Processing Time 0.023 seconds

Fabrication of PEDOT:PSS/AgNW-based Electrically Conductive Smart Textiles Using the Screen Printing Method and its Application to Signal Transmission Lines (스크린 프린팅을 이용한 PEDOT:PSS/AgNW 기반 전기전도성 스마트 텍스타일의 제조 및 신호전달선으로의 적용)

  • Kang, Heeeun;Lee, Eugene;Cho, Gilsoo
    • Fashion & Textile Research Journal
    • /
    • v.23 no.4
    • /
    • pp.527-535
    • /
    • 2021
  • In this study, electroconductive textiles were developed by screen-printing technology using a complex solution of PEDOT:PSS/AgNW on a polylactic acid nanofiber web. A performance evaluation was then conducted to utilize this electroconductive textile as a signal transmission line. To obtain highly conductive electroconductive textiles, this study sought to determine the optimal mixing ratio of PEDOT:PSS/AgNW. Sheet resistance was measured to evaluate the electrical properties of electroconductive textiles, Finite element-scanning electron microscopy images were then used to examine surface properties, and Fourier transform-infrared analysis was performed to evaluate chemical properties. The signal waveform characteristics of the electroconductive textile were observed using a signal generator and an oscilloscope. Radio-frequency characteristics were then evaluated to confirm frequency range, and bending tests were conducted to evaluate durability. The signal transmission lines produced in this study had a sheet resistance value of 3.30 ?/sq, and signal transmission performance was evaluated to observe that the input value of the voltage was nearly identical to the output value. In addition, S21 analysis confirmed that it was available in the frequency domain up to 35 MHz. The performances of the transmission lines were maintained after 100, 200, 500, and 1,000 repeated bending tests, and sufficient durability was confirmed.

Development of Unmanned Video Recording System using Mobile (모바일을 이용한 무인 영상 녹화 시스템 개발)

  • Ahn, Byeongtae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.254-260
    • /
    • 2019
  • Recently, a self-camera that generates and distributes a large amount of moving images has been rapidly increasing due to the appearance of SNS such as Facebook, Instagram, and Tweet using mobile. In particular, the amount of SNS connections using mobile phones is significantly increasing in terms of usage, number of connections, and usage time. However, the use of a self-recording system using a smartphone by itself is extremely limited not only in terms of usage but also in frequency of use. In addition, the conventional unattended recording system is a very expensive system that automatically records and tracks an object to be photographed using an infrared signal. Therefore, this paper developed a low cost unmanned recording system using mobile phone. The system consists of a commercial mobile camera, a servomotor for moving the camera from side to side, a microcontroller for controlling the motor, and a commercial wireless Bluetooth earset for video audio input. And it is an unmanned automation system using mobile, and anyone can record image by self image tracking.

Behavior of the Ultrasonically-atomized Liquid-fuel Flame Injected through a Slit-jet Nozzle (Slit-jet 노즐을 통해 분사되는 초음파 무화 액체연료 화염의 거동)

  • Kim, Min Cheol;Kim, Min Sung;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.1-10
    • /
    • 2018
  • An experimental study was performed for the behavior of the burner flame which results from burning of the liquid hydrocarbon fuel atomized by an ultrasonic transducer. Configurations of the flame and combustion-field were caught by both high-speed camera and thermo-graphic camera, and those images were analyzed in detail through a image post-processing. As a result, the combustion-field grew and reaction-temperature rose due to the strengthening of combustion reaction with the increasing flow-rate of carrier-gas. In addition, a phenomenon of flame flickering was discussed through the comparative analysis of the variational behavior between the visible flame and IR (Infrared) flame-field. Also, the flickering frequency of the flame was confirmed through FFT (Fast Fourier Transform) analysis employing the flame area.

Design and Implementation of Side-Type Finger Vein Recognizer (측면형 지정맥 인식기 설계 및 구현)

  • Kim, Kyeong-Rae;Choi, Hong-Rak;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.159-168
    • /
    • 2021
  • As the information age enters, the use of biometrics using the body is gradually increasing because it is very important to accurately recognize and authenticate each individual's identity for information protection. Among them, finger vein authentication technology is receiving a lot of attention because it is difficult to forge and demodulate, so it has high security, high precision, and easy user acceptance. However, the accuracy may be degraded depending on the algorithm for identification or the surrounding light environment. In this paper, we designed and manufactured a side-type finger vein recognizer that is highly versatile among finger vein measuring devices, and authenticated using the deep learning model of DenseNet-201 for high accuracy and recognition rate. The performance of finger vein authentication technology according to the influence of the infrared light source used and the surrounding visible light was analyzed through simulation. The simulations used data from MMCBNU_6000 of Jeonbuk National University and finger vein images taken directly were used, and the performance were compared and analyzed using the EER.

Deep Learning Image Processing Technology for Vehicle Occupancy Detection (차량탑승인원 탐지를 위한 딥러닝 영상처리 기술 연구)

  • Jang, SungJin;Jang, JongWook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1026-1031
    • /
    • 2021
  • With the development of global automotive technology and the expansion of market size, demand for vehicles is increasing, which is leading to a decrease in the number of passengers on the road and an increase in the number of vehicles on the road. This causes traffic jams, and in order to solve these problems, the number of illegal vehicles continues to increase. Various technologies are being studied to crack down on these illegal activities. Previously developed systems use trigger equipment to recognize vehicles and photograph vehicles using infrared cameras to detect the number of passengers on board. In this paper, we propose a vehicle occupant detection system with deep learning model techniques without exploiting existing system-applied trigger equipment. The proposed technique proposes a system to detect vehicles by establishing triggers within images and to apply deep learning object recognition models to detect real-time boarding personnel.

Three-dimensional analysis of dermal backflow in cancer-related lymphedema using photoacoustic lymphangiography

  • Oh, Anna;Kajita, Hiroki;Imanishi, Nobuaki;Sakuma, Hisashi;Takatsume, Yoshifumi;Okabe, Keisuke;Aiso, Sadakazu;Kishi, Kazuo
    • Archives of Plastic Surgery
    • /
    • v.49 no.1
    • /
    • pp.99-107
    • /
    • 2022
  • Background Dermal backflow (DBF), which refers to lymphatic reflux due to lymphatic valve insufficiency, is a diagnostic finding in lymphedema. However, the three-dimensional structure of DBF remains unknown. Photoacoustic lymphangiography (PAL) is a new technique that enables the visualization of the distribution of light-absorbing molecules, such as hemoglobin or indocyanine green (ICG), and can provide three-dimensional images of superficial lymphatic vessels and the venous system. This study reports the use of PAL to visualize DBF structures in the extremities of patients with lymphedema after cancer surgery. Methods Patients with a clinical or lymphographic diagnosis of lymphedema who previously underwent surgery for cancer at one of two participating hospitals were included in this study. PAL was performed using the PAI-05 system. ICG was administered subcutaneously in the affected hand or foot, and ICG fluorescence lymphography was performed using a near-infrared camera system prior to PAL. Results Between April 2018 and January 2019, 21 patients were enrolled and examined using PAL. The DBF was composed of dense, interconnecting, three-dimensional lymphatic vessels. It was classified into three patterns according to the composition of the lymphatic vessels: a linear structure of lymphatic collectors (pattern 1), a network of lymphatic capillaries and lymphatic collectors in an underlying layer (pattern 2), and lymphatic capillaries and precollectors with no lymphatic collectors (pattern 3). Conclusions PAL showed the structure of DBF more precisely than ICG fluorescence lymphography. The use of PAL to visualize DBF assists in understanding the pathophysiology and assessing the severity of cancer-related lymphedema.

Design and Implementation of Smart Self-Learning Aid: Micro Dot Pattern Recognition based Information Embedding Solution (스마트 학습지: 미세 격자 패턴 인식 기반의 지능형 학습 도우미 시스템의 설계와 구현)

  • Shim, Jae-Youen;Kim, Seong-Whan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.346-349
    • /
    • 2011
  • In this paper, we design a perceptually invisible dot pattern layout and its recognition scheme, and we apply the recognition scheme into a smart self learning aid for interactive learning aid. To increase maximum information capacity and also increase robustness to the noises, we design a ECC (error correcting code) based dot pattern with directional vector indicator. To make a smart self-learning aid, we embed the micro dot pattern (20 information bit + 15 ECC bits + 9 layout information bit) using K ink (CMYK) and extract the dot pattern using IR (infrared) LED and IR filter based camera, which is embedded in the smart pen. The reason we use K ink is that K ink is a carbon based ink in nature, and carbon is easily recognized with IR even without light. After acquiring IR camera images for the dot patterns, we perform layout adjustment using the 9 layout information bit, and extract 20 information bits from 35 data bits which is composed of 20 information bits and 15 ECC bits. To embed and extract information bits, we use topology based dot pattern recognition scheme which is robust to geometric distortion which is very usual in camera based recognition scheme. Topology based pattern recognition traces next information bit symbols using topological distance measurement from the pivot information bit. We implemented and experimented with sample patterns, and it shows that we can achieve almost 99% recognition for our embedding patterns.

Polarimetry of (162173) Ryugu at the Bohyunsan Optical Astronomy Observatory using the 1.8-m Telescope with TRIPOL

  • Jin, Sunho;Ishiguro, Masateru;Kuroda, Daisuke;Geem, Jooyeon;Bach, Yoonsoo P.;Seo, Jinguk;Sasago, Hiroshi;Sato, Shuji
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.45.2-46
    • /
    • 2021
  • The Hayabusa 2 mission target asteroid (162173) Ryugu is a near-Earth, carbonaceous (C-type) asteroid. Before the arrival, this asteroid is expected to be covered with mm- to cm- sized grains through the thermal infrared observations [1]. These grains are widely understood to be formed by past impacts with other celestial bodies and fractures induced by thermal fatigue [2]. However, the close-up images by the MASCOT lander showed lumpy boulders but no abundant fine grains [3]. Morota et al. suggested that there would be submillimeter particles on the top of these boulders but not resolved by Hayabusa 2's onboard instruments [4]. Hence, we conducted polarimetry of Ryugu to investigate microscopic grain sizes on its surface. Polarimetry is a powerful tool to estimate physical properties such as albedo and grain size. Especially, it is known that the maximum polarization degree (Pmax) and the geometric albedo (pV) show an empirical relationship depending on surface grain sizes [5]. We observed Ryugu from UT 2020 November 30 to December 10 at large phase angles (ranging from 78.5 to 89.7 degrees) to derive Pmax. We modified TRIPOL (Triple Range Imager and POLarimeter, [6]) to attach to the 1.8-m telescope at the Bohyunsan Optical Astronomy Observatory (BOAO). With this instrument, we observed the asteroid and determined linear polarization degrees at the Rc-band filter. We obtained sufficient data sets from 7 nights at this observatory to determine the Pmax value, and collaborated with other observatories in Japan (i.e., Hokkaido University, Higashi-Hiroshima, and Nishi-Harima) to acquire linear polarization degrees of the asteroid from total 24 nights observations with large phase angle coverage (From 28 to 104 degrees). The observational results have been published in Kuroda et al. (2021) [7]. We thus found the dominance of submillimeter particles on the surface of Ryugu from the comparison with other meteorite samples from the campaign observation. In this presentation, we report our activity to modify the TRIPOL for the 1.8-m telescope and the polarimetric performance. We also examine the rotational variability of the polarization degree using the TRIPOL data.

  • PDF

Recoverability analysis of Forest Fire Area Based on Satellite Imagery: Applications to DMZ in the Western Imjin Estuary (위성영상을 이용한 서부임진강하구권역 내 DMZ 산불지역 회복성 분석)

  • Kim, Jang Soo;Oh, Jeong-Sik
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.1
    • /
    • pp.83-99
    • /
    • 2021
  • Burn severity analysis using satellite imagery has high capabilities for research and management in inaccessible areas. We extracted the forest fire area of the DMZ (Demilitarized Zone) in the western Imjin Estuary which is restricted to access due to the confrontation between South and North Korea. Then we analyzed the forest fire severity and recoverability using atmospheric corrected Surface Reflectance Level-2 data collected from Landsat-8 OLI (Operational Land Imagery) / TIRS (Thermal Infrared Sensor). Normalized Burn Ratio (NBR), differenced NBR (dNBR), and Relative dNBR (RdNBR) were analyzed based on changes in the spectral pattern of satellite images to estimate burn severity area and intensity. Also, we evaluated the recoverability after a forest fire using a land cover map which is constructed from the NBR, dNBR, and RdNBR analyzed results. The results of dNBR and RdNBR analysis for the six years (during May 30, 2014 - May 30, 2020) showed that the intensity of monthly burn severity was affected by seasonal changes after the outbreak and the intensity of annual burn severity gradually decreased after the fire events. The regrowth of vegetation was detected in most of the affected areas for three years (until May 2020) after the forest fire reoccurred in May 2017. The monthly recoverability (from April 2014 to December 2015) of forests and grass fields was increased and decreased per month depending on the vegetation growth rate of each season. In the case of annual recoverability, the growth of forest and grass field was reset caused by the recurrence of a forest fire in 2017, then gradually recovered with grass fields from 2017 to 2020. We confirmed that remote sensing was effectively applied to research of the burn severity and recoverability in the DMZ. This study would also provide implications for the management and construction statistics database of the forest fire in the DMZ.

Evaluation of Physicochemical Changes in Hard-Boiled Eggs Stored at Different Temperatures

  • Gamaralalage Schithra Rukshan Eregama;Shine Htet Aung;Herath Mudiyanselage Jagath Chaminda Pitawala;Mahabbat Ali;Seong-Yun Lee;Ji-Young Park;Edirisinghe Dewage Nalaka Sandun Abeyrathne;Ki-Chang Nam
    • Food Science of Animal Resources
    • /
    • v.44 no.1
    • /
    • pp.74-86
    • /
    • 2024
  • Eggs that have been hard-boiled are frequently used as ready-to-eat food. Refrigerated and frozen storage of hard-boiled eggs causes issues, such as customer rejection owing to textural changes. The objective of this research is to ascertain how storage temperature affects hard-boiled eggs' alteration in texture over time. Medium-sized brown shell eggs were acquired from a local market, boiled at 100℃ for 15 min, and then stored at room temperature (25℃), refrigeration (4℃), and freezing (-18℃) conditions for 0, 12, 24, and 48 h. Fourier transform infrared spectroscopy (FTIR), texture profile, visual observation using a gemological microscope, free amino acid content, and color were measured. Freezing had a substantial impact on the eggs' hardness, gumminess, chewiness, and cohesiveness (p<0.05). The FTIR spectrums confirmed the textural changes in bonds of amide A (3,271 cm-1), amide I (1,626.2 cm-1), amide II (1,539.0 cm-1), C=O stretch of COO- (1,397 cm-1), asymmetric PO2- stretch (1,240 cm-1). Microscopic images confirmed structural changes in eggs stored at -18℃. The free amino acid content was lower in fresh and frozen eggs than in the rest (p<0.05). However, there was no discernible variation in the egg white's color when eggs were kept at 4℃ (p>0.05). Salmonella spp. was found exclusively in eggs kept at room temperature. In conclusion, hard-boiled eggs did not exhibit structural or chemical changes when stored at 4℃ for up to 48 h compared to freezing and room temperature conditions.