• Title/Summary/Keyword: Infrared data

Search Result 1,542, Processing Time 0.049 seconds

Design of a Compensation Algorithm for Thermal Infrared Data considering Environmental Temperature Variations (주변 환경 온도 변화를 고려한 열화상 온도 데이터의 보정 알고리즘 설계)

  • Song, Seong-Ho
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.261-266
    • /
    • 2021
  • This paper suggests design methodology for thermal infrared data correction algorithms considering environmental temperature variations. First, a thermal infrared measurement model is suggested by a parameter-dependent first-order input-output equation using the relationship between infrared measurement data and model environmental parameters. In order to compensate the influence of environmental temperatures on infrared data, a compensation function is identified. Through experiments, the proposed algorithm is shown to reduce the influence of environmental temperatures on the infrared data effectively.

Detection of Subsurface Defects in Metal Materials Using Infrared Thermography; Image Processing and Finite Element Modeling

  • Ranjit, Shrestha;Kim, Won Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.128-134
    • /
    • 2014
  • Infrared thermography is an emerging approach to non-contact, non-intrusive, and non-destructive inspection of various solid materials such as metals, composites, and semiconductors for industrial and research interests. In this study, data processing was applied to infrared thermography measurements to detect defects in metals that were widely used in industrial fields. When analyzing experimental data from infrared thermographic testing, raw images were often not appropriate. Thus, various data analysis methods were used at the pre-processing and processing levels in data processing programs for quantitative analysis of defect detection and characterization; these increased the infrared non-destructive testing capabilities since subtle defects signature became apparent. A 3D finite element simulation was performed to verify and analyze the data obtained from both the experiment and the image processing techniques.

Research for development of small format multi -spectral aerial photographing systems (PKNU 3) (소형 다중분광 항공촬영 시스템(PKNU 3호) 개발에 관한 연구)

  • 이은경;최철웅;서영찬;조남춘
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.143-152
    • /
    • 2004
  • Researchers seeking geological and environmental information, depend on remote sensing and aerial photographic datum from various commercial satellites and aircraft. However, adverse weather conditions as well as equipment expense limit the ability to collect data anywhere and anytime. To allow for better flexibility in geological and environmental data collection, we have developed a compact, multi-spectral automatic Aerial Photographic system (PKNU2). This system's Multi-spectral camera can record visible (RGB) and infrared (NIR) band (3032*2008 Pixels) images Visible and infrared band images were obtained from each camera respectively and produced color-infrared composite images to be analyzed for the purpose of the environmental monitoring. However this did not provide quality data. Furthermore, it has the disadvantage of having the stereoscopic overlap area being 60% unsatisfied due to the 12 seconds of storage time of each data The PKNU2 system in contrast, photographed photos of great capacity Thus, with such results, we have been proceeding to develop the advanced PKNU2 (PKNU3) system that consists of a color-infrared spectral camera that can photograph in the visible and near-infrared bands simultaneously using a single sensor, a thermal infrared camera, two 40G computers to store images, and an MPEG board that can compress and transfer data to the computer in real time as well as be able to be mounted onto a helicopter platform.

  • PDF

A Wide Dynamic Range NUC Algorithm for IRCS Systems

  • Cai, Li-Hua;He, Feng-Yun;Chang, Song-Tao;Li, Zhou
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1821-1826
    • /
    • 2018
  • Uniformity is a key feature of state-of-the-art infrared focal planed array (IRFPA) and infrared imaging system. Unlike traditional infrared telescope facility, a ground-based infrared radiant characteristics measurement system with an IRFPA not only provides a series of high signal-to-noise ratio (SNR) infrared image but also ensures the validity of radiant measurement data. Normally, a long integration time tends to produce a high SNR infrared image for infrared radiant characteristics radiometry system. In view of the variability of and uncertainty in the measured target's energy, the operation of switching the integration time and attenuators usually guarantees the guality of the infrared radiation measurement data obtainted during the infrared radiant characteristics radiometry process. Non-uniformity correction (NUC) coefficients in a given integration time are often applied to a specified integration time. If the integration time is switched, the SNR for the infrared imaging will degenerate rapidly. Considering the effect of the SNR for the infrared image and the infrared radiant characteristics radiometry above, we propose a-wide-dynamic-range NUC algorithm. In addition, this essasy derives and establishes the mathematical modal of the algorithm in detail. Then, we conduct verification experiments by using a ground-based MWIR(Mid-wave Infared) radiant characteristics radiometry system with an Ø400 mm aperture. The experimental results obtained using the proposed algorithm and the traditional algorithm for different integration time are compared. The statistical data shows that the average non-uniformity for the proposed algorithm decreased from 0.77% to 0.21% at 2.5 ms and from 1.33% to 0.26% at 5.5 ms. The testing results demonstrate that the usage of suggested algorithm can improve infrared imaging quality and radiation measurement accuracy.

Thermal Infrared Remote Sensing Data Utilization for Urban Heat Island and Urban Planning Studies

  • Lee, Hye Kyung
    • Journal of KIBIM
    • /
    • v.7 no.2
    • /
    • pp.36-43
    • /
    • 2017
  • Population growth and rapid urbanization has been converting large amounts of rural vegetation into urbanized areas. This human induced change has increased temperature in urban areas in comparison to adjacent rural regions. Various studies regarding to urban heat island have been conducted in different disciplines in order to analyze the environmental issue. Especially, different types of thermal infrared remote sensing data are applied to urban heat island research. This article reviews research focusing on thermal infrared remote sensing for urban heat island and urban planning studies. Seven studies of analyses for the relationships between urban heat island and other dependent indicators in urban planning discipline are reviewed. Despite of different types of thermal infrared remote sensing data, units of analysis, land use and land cover, and other dependent variable, each study results in meaningful outputs which can be implemented in urban planning strategies. As the application of thermal infrared remote sensing data is critical to measure urban heat island, it is important to understand its advantages and disadvantages for better analyses of urban heat island based on this review. Despite of its limitations - spatial resolution, overpass time, and revisiting cycle, it is meaningful to conduct future research on urban heat island with thermal infrared remote sensing data as well as its application to urban planning disciplines. Based on the results from this review, future research with remotely sensed data of urban heat island and urban planning could be modified and better results and mitigation strategies could be developed.

Following a Wall by an Mobile Robot with Sonar Sensors and Infrared Sensors (초음파센서와 적외선센서를 갖는 이동로봇의 벽면 따르기)

  • 윤정원;홍석교
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.423-423
    • /
    • 2000
  • This paper proposes an effective algorithm for following a wall by an autonomous mobile robot with sonar sensors and infrared sensors in an indoor environment. The proposed method uses deadreckoning to estimate the current position and orientation of a mobile robot. Sonar sensor data are used to estimate shape and position of wall using proposed algorithm. Infrared sensor data are used as assistant when sonar sensor data is uncertain. Simulation results using mobile robot show that the proposed algorithm is proper for the following wall.

  • PDF

THE EVOLUTION OF AGB STARS ON INFRARED 2-COLOR DIAGRAMS

  • Suh, Kyung-Won;Lee, Jae-Woo;Kim, Hak-Youn
    • Journal of Astronomy and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.15-20
    • /
    • 2001
  • We present infrared 2-color diagrams of AGB stars from the observations at near infrared and IRAS point source catalog (PSC) data. We compile the observations for thousands of newly identified OH/IR stars and carbon stars. We compare the observations with the theoretical evolutionary tracks of AGB stars. From the new observational data base and theoretical tracks, we discuss the meaning of the infrared 2-color diagrams.

  • PDF

INFRARED COLOR-COLOR DIAGRAMS FOR AGB STARS

  • Suh, kyung-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.3
    • /
    • pp.197-202
    • /
    • 2007
  • We present infrared color-color diagrams of AGB stars from the observations at near and mid infrared bands. We compile the observations for hundreds of OH/IR stars and carbon stars using the data from the Midcourse Space Experiment (MSX), the two micron sky survey (2MASS), and the IRAS point source catalog (PSC). We compare the observations with the theoretical evolutionary tracks of AGB stars. From the new observational data base and the theoretical evolution tracks, we discuss the meaning of the infrared color-color diagrams at different wavelengths.

Properties of the Variation of the Infrared Emission of OH/IR Stars I. The K Band Light Curves

  • Suh, Kyung-Won;Kwon, Young-Joo
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.3
    • /
    • pp.279-286
    • /
    • 2009
  • To study properties of the variation of the infrared emission of OH/IR stars, we collect and analyze the infrared observational data in K band for nine OH/IR stars. We use the observational data obtained for about three decades including recent data from the two micron all sky survey (2MASS) and the deep near infrared survey of the southern sky (DENIS). We use Marquardt-Levenberg algorithm to determine the pulsation period and amplitude for each star and compare them with previous results of infrared and radio investigations.

A Design of High Speed Infrared Optical Data Link IC (고속 적외선 광 송수신 IC 설계)

  • 임신일;조희랑;채용웅;유종선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12B
    • /
    • pp.1695-1702
    • /
    • 2001
  • This paper describes a design of CMOS infrared (IR) wireless data link IC which can be used in IrDA(Infrared Data Association) application from 4 Mb/s to 100 Mb/s The implemented chip consists of variable gain transimpedance amplifier which has a gain range from 60 dB to 100 dB, AGC (automatic gain control) circuits, AOC(automatic offset control) loop, 4 PPM (pulse position modulation) modulator/demodulator and DLL(delay locked loops). This infrared optical link If was implemented using commercial 0.25 um 1-poly 5-metal CMOS process. The chip consumes 25 mW at 100 Mb/s with 2.5 V supply voltage excluding buffer amplifier. The die area of prototype IC is 1.5 mm $\times$ 1 mm.

  • PDF