• Title/Summary/Keyword: Infrared analysis

Search Result 2,249, Processing Time 0.031 seconds

Development of the Near Infrared Camera System for Astronomical Application

  • Moon, Bong-Kon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.39.2-39.2
    • /
    • 2010
  • In this paper, I present the domestic development of near infrared camera systems for the ground telescope and the space satellite. These systems are the first infrared instruments made for astronomical observation in Korea. KASINICS (KASI Near Infrared Camera System) was developed to be installed on the 1.8m telescope of the Bohyunsan Optical Astronomy Observatory (BOAO) in Korea. KASINICS is equipped with a $512{\times}512$ InSb array enable L band observations as well as J, H, and Ks bands. The field-of-view of the array is $3.3'{\times}3.3'$ with a resolution of 0.39"/pixel. It employs an Offner relay optical system providing a cold stop to eliminate thermal background emission from the telescope structures. From the test observation, limiting magnitudes are J=17.6, H=17.5, Ks=16.1 and L(narrow)=10.0 mag at a signal-to-noise ratio of 10 in an integration time of 100 s. MIRIS (Multi-purpose InfraRed Imaging System) is the main payload of the STSAT-3 in Korea. MIRIS Space Observation Camera (SOC) covers the observation wavelength from $0.9{\mu}m$ to $2.0{\mu}m$ with a wide field of view $3.67^{\circ}{\times}3.67^{\circ}$. The PICNIC HgCdTe detector in a cold box is cooled down below 100K by a micro Stirling cooler of which cooling capacity is 220mW at 77K. MIRIS SOC adopts passive cooling technique to chill the telescope below 200K by pointing to the deep space (3K). The cooling mechanism employs a radiator, a Winston cone baffle, a thermal shield, MLI of 30 layers, and GFRP pipe support in the system. Opto-mechanical analysis was made in order to estimate and compensate possible stresses from the thermal contraction of mounting parts at cryogenic temperatures. Finite Element Analysis (FEA) of mechanical structure was also conducted to ensure safety and stability in launching environments and in orbit. MIRIS SOC will mainly perform the Galactic plane survey with narrow band filters (Pa $\alpha$ and Pa $\alpha$ continuum) and CIB (Cosmic Infrared Background) observation with wide band filters (I and H) driven by a cryogenic stepping motor.

  • PDF

Analysis on Sequence of Ball-pen and Pencil by using Digital Infrared Photography -with Emphasis on the Documents Authentication- (적외선 사진술을 이용한 볼펜과 연필의 선후 관계 분석 -문서감정을 중심으로-)

  • Kim, Yoo-Jin;Youn, Sung-Bin;Har, Dong-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.5
    • /
    • pp.481-488
    • /
    • 2011
  • Generally speaking, a document is a mutual promise between two parties and functions as a legally-binding trust for a transaction. A document should be produced on a mutual agreement basis, and its credibility shall be attained if the transparency of a document production is ensured. Therefore, sequence analysis of the procedures in a document production is very important for appraisal of a document. The purpose of this research is to distinguish sequence association between the erased carbon ingredients of a pencil and the ingredients left in a ball-point pen and thus suggest a method that determines whether mutual agreement was applied or not in signing an insurance policy. This method analyzes if the carbon ingredients of a pencil are left in the bottom section of a ball-point pen through infrared photography. If the carbon ingredients of a pencil are left in the bottom section of a pen, the pen shall absorb infrared rays and mark a dense concentration. This method applies a relatively simple infrared photography system and therefore shall be beneficial to a personal appraisal store.

Condition Monitoring under In-situ Lubrication Status of Bearing Using Infrared Thermography (적외선열화상을 이용한 베어링의 실시간 윤활상태에 따른 상태감시에 관한 연구)

  • Kim, Dong-Yeon;Hong, Dong-Pyo;Yu, Chung-Hwan;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.121-125
    • /
    • 2010
  • The infrared thermography technology rather than traditional nondestructive methods has benefits with non-contact and non-destructive testings in measuring for the fault diagnosis of the rotating machine. In this work, condition monitoring measurements using this advantage of thermography were proposed. From this study, the novel approach for the damage detection of a rotating machine was conducted based on the spectrum analysis. As results, by adopting the ball bearing used in the rotating machine applied extensively, an spectrum analysis with thermal imaging experiment was performed. Also, as analysing the temperature characteristics obtained from the infrared thermography for in-situ rotating ball bearing under the lubrication condition, it was concluded that infrared thermography for condition monitoring in the rotating machine at real time could be utilized in many industrial fields.

Classficiation of Bupleuri Radix according to Geographical Origins using Near Infrared Spectroscopy (NIRS) Combined with Supervised Pattern Recognition

  • Lee, Dong Young;Kang, Kyo Bin;Kim, Jina;Kim, Hyo Jin;Sung, Sang Hyun
    • Natural Product Sciences
    • /
    • v.24 no.3
    • /
    • pp.164-170
    • /
    • 2018
  • Rapid geographical classification of Bupleuri Radix is important in quality control. In this study, near infrared spectroscopy (NIRS) combined with supervised pattern recognition was attempted to classify Bupleuri Radix according to geographical origins. Three supervised pattern recognitions methods, partial least square discriminant analysis (PLS-DA), quadratic discriminant analysis (QDA) and radial basis function support vector machine (RBF-SVM), were performed to establish the classification models. The QDA and RBF-SVM models were performed based on principal component analysis (PCA). The number of principal components (PCs) was optimized by cross-validation in the model. The results showed that the performance of the QDA model is the optimum among the three models. The optimized QDA model was obtained when 7 PCs were used; the classification rates of the QDA model in the training and test sets are 97.8% and 95.2% respectively. The overall results showed that NIRS combined with supervised pattern recognition could be applied to classify Bupleuri Radix according to geographical origin.

Analysis of Protein and Moisture Contents in Pea(Pisum sativum L. Using Near-Infrared Reflectance Spectroscopy

  • Jung, Chan-Sik;Kim, Byung-Joo;Kwon, Yil-Chan;Han, Won-Young;Kwack, Yong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.2
    • /
    • pp.101-104
    • /
    • 1998
  • This study was conducted to establish a rapid analysis method for determining protein and moisture contents of pea. Ninety and eighty pea (Pisum sativum L.) lines were analyzed to determine protein and moisture contents, respectively using near-infrared reflectance spectroscopy. Simple correlations (${\gamma}$) of protein content in a ground sample and an intact grain sample by an automatic regression method were 0.978 and 0.910, respectively. Simple correlations by partial least square regression/principal component analysis (PLS/PCA) methods were 0.982 and 0.925, respectively. Standard error of performance (SEP) in protein content was the lowest value, 0.446 in ground sample by PLS/PCA methods. Simple correlation of moisture content was the highest at 0.871 in ground samples. when using a standard regression method. Accuracy for the moisture content was slightly lower than for protein content. It was concluded that the NIRS method would be applicable only for rapid determination of protein content in pea.

  • PDF

CHARACTERIZATION AND CLASSIFICATION BY NEAR INFRARED SPECTROSCOPY OF WAXES USED IN DAIRY TECHNOLOGY

  • Barzaghi, Stefania;Giardina, Claudia;Cattaneo, Tiziana M.P.;Giangiacomo, Roberto
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1252-1252
    • /
    • 2001
  • The aim of this study was to evaluate the possibility to characterize and classify waxes applied on some type of cheeses to obtain good stability during handling and transportation. Generally, waxes are obtained from the petrochemical industry, nowadays there is the possibility to also use biodegradable waxes produced from microorganisms. Preliminary studies were carried out to optimize sample presentation in NIR analysis, such as melting conditions (influence of temperature) and coat thickness of wax. 12 waxes (biodegradable or not) were analysed by using an InfraAlyzer 500 (Bran+Luebbe). The sample size was performed cutting pieces of 1.5 cm (height) x 1.5 cm (width) x 1.5 mm (thickness), previously melted at 9$0^{\circ}C$. NIR spectra were collected at room temperature, and data were processed by Sesame Software (Bran+Luebbe) to evaluate qualitative differences among samples by cluster analysis. Waxes were gathered on the basis of their origin (petrochemical or microbial). To better understand the significance of the NIRS bands discriminating among waxes, a two-dimensional correlation with FT-IR spectra, collected by a FT-IR/ATR 420 (JASCO) instrument, was made using 2DCORR program (Galactic Industries). On the basis of its classification power, NIRS appears to be a promising tool when used in routine analysis for a qualitative control of raw materials.

  • PDF

Three-Dimensional Conjugate Heat Transfer Analysis for Infrared Target Modeling (적외선 표적 모델링을 위한 3차원 복합 열해석 기법 연구)

  • Jang, Hyunsung;Ha, Namkoo;Lee, Seungha;Choi, Taekyu;Kim, Minah
    • Journal of KIISE
    • /
    • v.44 no.4
    • /
    • pp.411-416
    • /
    • 2017
  • The spectral radiance received by an infrared (IR) sensor is mainly influenced by the surface temperature of the target itself. Therefore, the precise temperature prediction is important for generating an IR target image. In this paper, we implement the combined three-dimensional surface temperature prediction module against target attitudes, environments and properties of a material for generating a realistic IR signal. In order to verify the calculated surface temperature, we are using the well-known IR signature analysis software, OKTAL-SE and compare the result with that. In addition, IR signal modeling is performed using the result of the surface temperature through coupling with OKTAL-SE.

Discrimination between Artemisia princeps and Artemisia capillaris Based on Near Infrared Spectroscopy Combined Multivariate Analysis

  • Lee, Dong-Young;Jeon, Min-Ji;Suh, Young-Bae;Kim, Seung-Hyun;Kim, Young-Choong;Sung, Sang-Hyun
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.6
    • /
    • pp.377-380
    • /
    • 2011
  • The Artemisia princeps (Compositae) has been used in traditional Korean medicine for the treatment of microbial infections and inflammatory diseases. Since A. princeps is generally difficult to be discriminated from A. capillaris, A. caplillaris has been misused in place of A. princeps. To solve this problem, a rapid and nondestructive method for discrimination of A. princeps and A. capillaris samples was developed using near infrared spectroscopy (NIRS) in the present study. A principal component analysis (PCA) and a partial least squares discrimination analysis (PLS-DA) were performed to discriminate two species. As a result, with the use of PLS-DA, A. princeps and A. capillaris were clustered according to their genus. These outcomes indicated that the NIRS could be useful for the discrimination between Artemisia princeps and Artemisia capillaris.

Glucose Prediction in the Interstitial Fluid Based on Infrared Absorption Spectroscopy Using Multi-component Analysis

  • Kim, Hye-Jeong;Noh, In-Sup;Yoon, Gil-Won
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.279-285
    • /
    • 2009
  • Prediction of glucose concentration in the interstitial fluid (ISF) based on mid-infrared absorption spectroscopy was examined at the glucose fundamental absorption band of 1000 - 1500/cm (10 - 6.67 um) using multi-component analysis. Simulated ISF samples were prepared by including four major ISF components. Sodium lactate had absorption spectra that interfere with those of glucose. The rest NaCl, KCl and $CaCl_2$ did not have any signatures. A preliminary experiment based on Design of Experiment, an optimization method, proved that sodium lactate influenced the prediction accuracy of glucose. For the main experiment, 54 samples were prepared whose glucose and sodium lactate concentration varied independently. A partial least squares regression (PLSR) analysis was used to build calibration models. The prediction accuracy was dependent on spectrum preprocessing methods, and Mean Centering produced the best results. Depending on calibration sample sets whose sodium lactate had different concentration levels, the standard error prediction (SEP) of glucose ranged $17.19{\sim}21.02\;mg/dl$.

STS Defect Structure Diagonis through the Infrared Thermography Mechanism and Flex-PDE Thermal Analysis (적외선 열화상 메카니즘과 Flex-PDE 열해석을 통한 STS 결함구조물 진단)

  • Park, Young Hoon;Yang, Sung Mo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.20-29
    • /
    • 2014
  • This research aims to study the new paradigm of NDE measurement which allows the identification of defect locations and sizes of a certain structure by measuring its surface temperature after applying heat. STS which has a certain defect is applied by the heat of 70000W by a heater. Its difference of STS surface temperature is measured by using Infrared thermography. The estimated result of STS experiment and that of theoretical analysis of Flex-PDE are compared and analyzed to diagnose STS defect. Moreover, this study can save time and money and improve accuracy in contrast to the existing ultrasonic NDE experiment. In addition, the new paradigm of NDT/NDE by reverse-engineering will be valid if the data of thermal analysis and temperature distribution from the specifications of many materials is accumulated and verified.