• Title/Summary/Keyword: Infrared Thermography

Search Result 295, Processing Time 0.025 seconds

Estimation of Dynamic Stress Concentration Factor by Infrared Thermography Stress Analysis (적외선 열화상 응력측정법에 의한 동적 응력집중계수 예측)

  • Choi, Man-Yong;Kang, Ki-Soo;Park, Jeong-Hak;Ahn, Byung-Wook;Kim, Koung-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.77-81
    • /
    • 2008
  • Structural components subjected to high frequency vibrations, such as those used in vibrating parts of gas turbine engines, are usually required to avoid resonance frequencies. Generally, the operating frequency is designed at more than resonance frequencies. When a vibrating structure starts or stops, the structure has to pass through a resonance frequency, which results in large stress concentration. This paper presents the transient thermoelastic stress analysis of vibrating cantilever beam using infrared thermography and finite element method (FEM). In FEM, stress concentration factor at the 2nd resonance vibration mode is calculated by the mode superposition method of ANSYS. In experiment, stress distributions are investigated with infrared thermography and dynamic stress concentration factor is estimated. Experimental result is agreed with FEM result within 10.6%. The advantage of this technique is a better immunity to contact problem and geometric limitation in stress analysis of small or micro structures.

Assessment of concrete macrocrack depth using infrared thermography

  • Bae, Jaehoon;Jang, Arum;Park, Min Jae;Lee, Jonghoon;Ju, Young K.
    • Steel and Composite Structures
    • /
    • v.43 no.4
    • /
    • pp.501-509
    • /
    • 2022
  • Cracks are common defects in concrete structures. Thus far, crack inspection has been manually performed using the contact inspection method. This manpower-dependent method inevitably increases the cost and work hours. Various non-contact studies have been conducted to overcome such difficulties. However, previous studies have focused on developing a methodology for non-contact inspection or local quantitative detection of crack width or length on concrete surfaces. However, crack depth can affect the safety of concrete structures. In particular, although macrocrack depth is structurally fatal, it is difficult to find it with the existing method. Therefore, an experimental investigation based on non-contact infrared thermography and multivariate machine learning was performed in this study to estimate the hidden macrocrack depth. To consider practical applications for inspection, an experiment was conducted that considered the simulated piloting of an unmanned aerial vehicle equipped with infrared thermography equipment. The crack depths (10-60 mm) were comparatively evaluated using linear regression, gradient boosting, and random forest (AI regression methods).

The Effectiveness of Infrared Thermography in Patients with Whiplash Injury

  • Lee, Young Seo;Paeng, Sung Hwa;Farhadi, Hooman F.;Lee, Won Hee;Kim, Sung Tae;Lee, Kun Su
    • Journal of Korean Neurosurgical Society
    • /
    • v.57 no.4
    • /
    • pp.283-288
    • /
    • 2015
  • Objective : This study aims to visualize the subjective symptoms before and after the treatment of whiplash injury using infrared (IR) thermography. Methods : IR thermography was performed for 42 patients who were diagnosed with whiplash injury. There were 19 male and 23 female patients. The mean age was 43.12 years. Thermal differences (${\Delta}T$) in the neck and shoulder and changes in the thermal differences (${\Delta}dT$) before and after treatment were analyzed. Pain after injury was evaluated using visual analogue scale (VAS) before and after treatment (${\Delta}VAS$). The correlations between ${\Delta}dT$ and ${\Delta}VAS$ results before and after the treatment were examined. We used Digital Infrared Thermal Imaging equipment of Dorex company for IR thermography. Results : The skin temperature of the neck and shoulder immediately after injury showed $1-2^{\circ}C$ hyperthermia than normal. After two weeks, the skin temperature was normal range. ${\Delta}T$ after immediately injuy was higher than normal value, but it was gradually near the normal value after two weeks. ${\Delta}dT$ before and after treatment were statistically significant (p<0.05). VAS of the neck and shoulder significantly reduced after 2 week (p=0.001). Also, there was significant correlation between ${\Delta}dT$ and reduced ${\Delta}VAS$ (the neck; r=0.412, p<0.007) (the shoulder; r=0.648, p<0.000). Conclusion : The skin temperature of sites with whiplash injury is immediately hyperthermia and gradually decreased after two weeks, finally it got close to normal temperature. These were highly correlated with reduced VAS. IR thermography can be a reliable tool to visualize the symptoms of whiplash injury and the effectiveness of treatment in clinical settings.

Defect Detection of Carbon Steel Pipe Weld Area using Infrared Thermography Camera (적외선 열화상 카메라를 이용한 탄소강관 용접부 결함검출)

  • Kwon, DaeJu;Jung, NaRa;Kim, JaeYeol
    • Tribology and Lubricants
    • /
    • v.30 no.2
    • /
    • pp.124-129
    • /
    • 2014
  • The piping system accounts for a large portion of the machinery structure of a plant, and is considered as a very important mechanical structure for plant safety. Accordingly, it is used in most energy plants in the nuclear, gas, and heavy chemical industries. In particular, the piping system for a nuclear plant is generally complicated and uses the reactor and its cooling system. The piping equipment is exposed to diverse loads such as weight, temperature, pressure, and seismic load from pipes and fluids, and is used to transfer steam, oil, and gas. In ultrasound infrared thermography, which is an active thermography technology, a 15-100 kHz ultrasound wave is applied to the subject, and the resulting heat from the defective parts is measured using a thermography camera. Because this technique can inspect a large area simultaneously and detect defects such as cracks and delamination in real time, it is used to detect defects in the new and renewable energy, car, and aerospace industries, and recently, in piping defect detection. In this study, ultrasound infrared thermography is used to detect information for the diagnosis of nuclear equipment and structures. Test specimens are prepared with piping materials for nuclear plants, and the optimally designed ultrasound horn and ultrasound vibration system is used to determine damages on nuclear plant piping and detect defects. Additionally, the detected images are used to improve the reliability of the surface and internal defect detection for nuclear piping materials, and their field applicability and reliability is verified.

IR Camera Technique Application for Evaluation of Gas Turbine Blades Covering Integrity (가스터빈의 코팅층 건정성 평가를 위한 적외선 열화상 카메라 기법 활용)

  • Kim J.Y.;Yang D.J.;Choi C.J.;Park S.G.;Ahn Y.S.;Jeong G.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.192-196
    • /
    • 2005
  • Key part of main equipment in a gas turbine may be likely to be damaged due to operation under high temperature, high pressure, high-speed rotation, etc. Accordingly, the cost for maintenance increases and the damaged parts may cause generation to stop. The number of parts for maintenance also increases, but diagnostics technology fur the maintenance actually does not catch up with the demand. Blades are made of precipitation hardening Ni superalloy IN738 and the like for keeping hot strength. The surface of a blade is thermal-sprayed, using powder with main compositions such as Ni, Cr, Al, etc. in order to inhibit hot oxidation. Conventional regular maintenance of the coating layer of a blade is made by FPI (Fluorescent Penetrant Inspection) and MTP (Magnetic Particle Testing). Such methods, however, are complicated and take long time and also require much cost. In this study, defect diagnostics were tested for the coating layer of an industrial gas turbine blade, using an infraredthermography camera. Since the infrared thermography method can check a temperature distribution on a wide range of area by means of non-contact, it can advantageously save expenses and time as compared to conventional test methods. For the infrared thermography method, however, thermo-load must be applied onto a tested specimen and it is difficult to quantify the measured data. To solve the problems, this essay includes description about producing a specimen of a gas turbine blade (bucket), applying thermo-load onto the produced specimen, photographing thermography images by an infrared thermography camera, analyzing the thermography images, and pre-testing for analyzing defects on the coating layer of the gas turbine blade.

  • PDF

Study on Infrared Thermography (적외석 체열촬영에 관한 고찰)

  • Kim, Ho-Bong
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.1 no.1
    • /
    • pp.9-14
    • /
    • 1995
  • Thermography is a diagnostic procedures that measures infrared energy emitted by the skin. Thermography detects body temperature change which are controlled by the autonomic nervous system. It does show the thermal dysfunction that correlates closely with pain syndromes as well as normalization when the healing process takes place. Experienced clinical interpretation of the thermal pattern is necessary to diagnose and establish causation. Thermography is useful in the diagnosis of painful conditions such as herniated disc diseases, myofascial syndrome, myositis, musculoligamentous injury, reflex sympathetic dystrophy, athretic injuries, vascular diseases, arthritis, inflammation and breast tumors.

  • PDF

A Study about Detection of Defects in the Nuclear Piping Loop System Using Cooling Lock-in Infrared Thermography (원전 배관 루프시스템의 냉각 위상잠금 적외선열화상을 이용한 결함 검출에 관한 연구)

  • Kim, Sang-Chae;Kang, Sung-Hoon;Yun, Na-Yeon;Jung, Hyun-Chul;Kim, Kyeong-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.321-331
    • /
    • 2015
  • A study on the application of cooling defect detection was performed on the basis of a preceding study on the heated defect detection in nuclear piping loop system, using lock-in infrared thermography. A loop system with piping defects was made by varying the wall-thinning length, the circumference orientation angle, and the wall-thinning depth. The test was performed using an IR camera and a cooling device. Distance between the cooling device and the target loop system was fixed at 2 m. For analyzing experimental results, the temperature distribution data for cooling, and phase data were obtained. Through the analysis of this data, the defect length was measured. The reliability of the measurements for cooling defect conditions was shown to be higher in the lock-in infrared thermography data than the infrared thermography data.

Application Angle of Defects Detection in the Pipe Using Lock-in Infrared Thermography (위상잠금 적외선 열화상 기법을 이용한 각도별 원전 감육 배관의 결함 검출)

  • Yun, Kyung-Won;Go, Gyeong-Uk;Kim, Jin-Weon;Jung, Hyun-Chul;Kim, Kyung-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.4
    • /
    • pp.323-329
    • /
    • 2013
  • This perform research of angle rated defect detection conditions and nuclear power plant piping defect detection by lock-In infrared thermography technique. Defects were processed according to change for wall-thinning length, Circumference orientation angle and wall-thinning depth. In the used equipment IR camera and two halogen lamps, whose full power capacitany is 1 kW, halogen lamps and target pipe's distance fixed 2 m. To analysis of the experimental results ensure for the temperature distribution data, by this data measure for defect length. Reliability of lock-In infrared thermography data is higher than Infrared thermography data. This through research, Shape of angle rated defect is identified industry place. It help various angles defect detection in the nuclear power plant in operation.

Visualization of Khitan Scripts in Ancient Documents using Active Infrared Thermography (고문서 거란문자의 능동형 적외선 열영상 가시화)

  • Kim, Nohyu;Chung, Jaeyoung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.329-336
    • /
    • 2022
  • Unreadable Khitan scripts of ancient documents written by indian ink on parchment(sheepskin) are visualized by active infrared thermography without contacting and damaging the document which are deteriorated and aged presumably over many years. Sinusoidal infrared thermal wave using Halogen lamp is applied to the surface of the document in order to selectively magnify and record the thermal response of indian ink. The infrared image of the document captured in real time by infrared camera under the active external excitation shows the better sharpness and readability of Khitan characters than the optical image, from which many Khitan letters like ' ' and ' ' sounding as 'd' and 'ri' in English alphabet are detected and deciphered. It is concluded from the experiment that the active infrared thermography can be used as a promising method for digital reconstruction and preservation of ancient documents in the future.

The Estimation of Defect of Mono Cast Nylon by Infrared Thermography (열화상 기술에 의한 M.C 나일론의 내부 결함에 대한 평가)

  • Han, Jeong-Seb
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.81-86
    • /
    • 2009
  • Infrared thermography was used to determine the location, size, and depth of defects under the surface of M.C nylon. Defects were created in a specimen by back-drilling circular holes. These defects were located at the maximum temperature difference that occurred. The sizes of the defects could be calculated by means of the full width at half of the maximum temperature difference. The depth of a defect could be calculated by the peak time and the maximum temperature difference. The maximum temperature difference between a defect and normal part was decreased with the depth of the defect. And the peak time also slowly appeared with the depth of the defect.