• Title/Summary/Keyword: Infrared Thermal Image Analysis

Search Result 96, Processing Time 0.027 seconds

Infrared Image Simulation for Estimating the Effectiveness of Camouflage Measures (표적은폐도구의 유용도 평가를 위한 적외선화상 모사)

  • Jung, Jinsoo;Kauh, S. Ken;Yoo, Hoseon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.1010-1021
    • /
    • 1999
  • Camouflage measures in military purpose utilize the apparent temperature difference between target and background, so it is essential to develop a thermal analysis program for apparent temperature predictions and to apply some camouflage measures to real military targets for camouflage purpose. In this study, a thermal analysis program including conduction, convection and radiation is developed and the validity of radiation heat transfer terms is examined. The results show that longwave radiation along with solar radiation should be included in order to predict the apparent temperature as well as the physical temperature precisely. Longwave emissivity variation as an effective camouflage measures is applied to a real M2 tank. From the simulation results, it is found that an effective surface treatment, such as painting of a less emissive material or camouflage clothing, may provide a temperature similarity or a spatial similarity, resulting in an effective camouflage.

Analysis of Water Stress of Greenhouse Crops Using Infrared Thermography (열영상 정보를 이용한 온실 재배 작물의 수분 스트레스 분석)

  • 김기영;류관희;채희연
    • Journal of Biosystems Engineering
    • /
    • v.24 no.5
    • /
    • pp.439-444
    • /
    • 1999
  • Automated greenhouse production systems often require crop growth monitoring involving accurate quantification of plant physiological properties. Conventional methods are usually burdensome, inaccurate, and harmful to crops. A thermal image analysis system can accomplish rapid and accurate measurements of physiological-property changes of stressed crops. In this research a thermal imaging system was used to measure the leaf-temperature changes of several crops according to water deficit. Thermal images were obtained from lettuce, cucumber, pepper, and chinese cabbage plants. Results showed that there were significant differences in the temperature of stressed plants and non-stressed plants. The temperature differences between these two group of plants were 0.7 to 3$^{\circ}C$ according to species.

  • PDF

Thermal environment analysis of greenhouse using Thermo-tracer (Thermo-tracer를 이용한 온실의 열환경 분석)

  • 이석건;이종원;이현우;김란숙
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.230-236
    • /
    • 1998
  • Thermal environment of greenhouse was investigated by thermo-tracer in this study. The Thermo-tracer is a high-sensitivity infrared thermometer of non-contact type. The infrared energy emitted from the measured object is converted into an electrical signal by the detector(HgCdTe) and display as a color or black & white thermal image by way of optical scanning, The experiment was conducted for Venlo-type greenhouse with pad & fan system. The temperature difference between measured by Thermo-trace and measured by HOBO sensor is maximum 0.8$^{\circ}C$. Thermo-trace is possible to use for the thermal environment analysis and diagnosis of a cooling and heating system of greenhouse.

  • PDF

Developing of Functional Sport Underpants using Infrared Thermal Image Analysis (열적외선 영상분석을 이용한 기능성 스포츠 팬티 개발)

  • Lee, Joong-Sook;Yang, Jeong-Ok;Lee, Bom-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.2
    • /
    • pp.231-240
    • /
    • 2015
  • Objective : This study is for providing data about men's functional sport underpants. It provides the fundamental data of biomechanics by measuring and analyzing the functionality of various underpants using infrared thermal image camera. Method : Then author drew a conclusion based on the final analysis of 965 questionnaire survey results about issues on men's functional sport underpants after discarding invalid questionnaires, as following. Change in body temperature while wearing functional underpants compared to general briefs or boxer pants showed lower temperature by approximately 1~2 degrees Celsius. In the case of general underpants, wearer sweats and feels hotter due to the friction of penis, scrotum and thigh. However functional sport functional underpants improved this issue with ergonomic 3D design by putting penis towards the lower part of the abdomen(below the navel) while putting the scrotum comfortably on the testicles, which enables to make room between the penis, scrotum and thigh of a wearer. Results : This was analyzed to lower the temperature of penis and scrotum. The survey results about the quality of functional underpants showed that 78% of the respondents felt comfortable while driving; 68.5% replied that frictional heat decreased while working out; 78.7% felt less sweat and humidity; 81.7% replied as highly wearable and comfortable; 77.1% replied functional sport underpants were the most comfortable in routine lives or in workout times. Putting all such results together, it is possible to conclude that functional sport is an excellent product. Conclusion : This can be evaluated as an excellent functional sport underpants, towards the penis abdomen (under the navel) in 3D human engineering design, by the scrotum to wearing to be easier to scrotum of pocket, the penis and scrotum and thighs were separated and analyzed with a function that will lower the body temperature of the penis and scrotum.

Characterisation of Tensile Deformation through Infrared Imaging Technique

  • B. Venkataraman, Baldev Raj;Mukhophadyay, C.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.6
    • /
    • pp.609-620
    • /
    • 2002
  • It is well known that during tensile testing, a part of the mechanical work done on the specimen is transformed into heat energy. However, the ultimate temperature rise and the rate of temperature rise is related to the nature of the material, conditions of the test and also to the deformation behaviour of the material during loading. The recent advances in infrared sensors and image/data processing techniques enable observation and quantitative analysis of the heat energy dissipated during such tensile tests. In this study, infrared imaging technique has been used to characterise the tensile deformation in AISI type 316 nuclear grade stainless steel. Apart from identifying the different stages during tensile deformation, the technique provided an accurate full-field temperature image by which the point and time of strain localization could be identified. The technique makes it possible to visualise the region of deformation and failure and also predict the exact region of fracture in advance. The effect of thermal gradients on plastic flow in the case of interrupted straining revealed that the interruption of strain and restraining at a lower strain rate not only delays the growth of the temperature gradient, but the temperature rise per unit strain decreases. The technique is a potential NDE tool that can be used for on-line detection of thermal gradients developed during extrusion and metal forming process which can be used for ensuring uniform distribution of plastic strain.

Infrared Thermography Quantitative Diagnosis in Vibration Mode of Rotational Mechanics

  • Seo, Jin-Ju;Choi, Nam-Ryoung;Kim, Won-Tae;Hong, Dong-Pyo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.3
    • /
    • pp.291-295
    • /
    • 2012
  • In the industrial field, real-time monitoring system like a fault early detection is very important. For this, the infrared thermography technique as a new diagnosis method is proposed. This study is focused on the damage detection and temperature characteristic analysis of ball bearing using the non-destructive infrared thermography method. In this paper, thermal image and temperature data were measured by a Cedip Silver 450 M infrared camera. Based on the results, the temperature characteristics under the conditions of normal, loss lubrication, damage, dynamic loading, and damage under loading were analyzed. It was confirmed that the infrared technique is very useful for the detection of the bearing damage.

Characterization on the Thermal Oxidation of Raw Natural Rubber Thin Film using Image and FT-IR Analysis

  • Kim, Ik-Sik;Cho, Hwanjeong;Sohn, Kyung-Suk;Choi, Hwa-Soon;Kim, Sung-Uk;Kim, Sinkon
    • Elastomers and Composites
    • /
    • v.55 no.1
    • /
    • pp.51-58
    • /
    • 2020
  • In this study, the thermal oxidation of raw natural rubber (NR) was investigated under controlled conditions by optical image and fourier transform infrared (FT-IR) analysis. The thermal oxidation was performed on a transparent thin film of raw NR coated on a KBr window in a dark chamber at 80℃ under low humidity conditions to completely exclude moisture and restrict light oxidation. Images of the thin film of raw NR were obtained before and after thermal oxidation. FT-IR absorption spectra were measured in the transmission mode at different thermal exposure times. The thermal oxidation of NR was examined by the changes in the absorption peaks at 3449, 1736, 1447, 1377, 1242, 1072, and 833 cm-1, which corresponded to a hydroxyl group (-OH), a carbonyl group (-C=O) from an aldehyde and a ketone, a methylene group (-CH2-), a methyl group (-CH3), a carbon-oxygen single bond (-C-O) from an epoxide, a carbon-oxygen bond (-C-O) from an ether, an alcohol, a peroxide, or a cyclic peroxide, and a cis-methine group (cis-CCH3=CH-), respectively. In the initial stage of thermal oxidation, two different types of free radicals were produced quickly and randomly by the homolytic cleavage of a double bond and allylic hydrogen abstraction. Aldehydes and ketones were formed from chain scissions of the double bonds and alcohols were produced from allylic hydrogen abstraction at the methylene or methyl groups. Two reactions seemed to proceed competitively with each other. At a later stage, oxidative crosslinks seemed to dominate through the combination of free radicals such as an allyl radical (CH=CHCH2·), alkoxy radical (RO·), and peroxy radical (ROO·) and the reaction of a hydroperoxide (-ROOH) with a double bond. The image obtained after thermal oxidation showed hardening without cracks. Based on these observations, a plausible two-step mechanism was suggested for chain hardening caused by the thermal oxidation.

A Study on the MDTF for Uncooled Infrared Ray Thermal Image Sensors with High Thermal Coefficient of Resistance (높은 열저항 계수를 가지는 비냉각형 적외선 열영상 이미지 센서용 MDTF(Metal-dielectric Thin Film)에 관한 연구)

  • Jung, Eun-Sik;Jeong, Se-Jin;Kang, Ey-Goo;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.5
    • /
    • pp.366-371
    • /
    • 2012
  • In this paper, fabricated by MEMS uncooled micro-bolometer detector for the study in the infrared sensitivity enhancement. Absorption layer SiOx-Metal series MDTF (metal-dielectric thin film) by high absorption rate and has a high thermal coefficient of resistance, low noise characteristics were implemented. Then MDTF were made in a vacuum deposition method. And MDTF for the analysis of the physical properties of silicon wafers were fabricated, TCR (temperature coefficient of resistance) value was made in order to measure the glass wafer and FT-IR (Fourier Transform Infrared spectroscopy) values were made in order to measure the germanium window. The analyzed results of MDTF -3 [%/K] has more characteristics of the TCR. And 8~12 um wavelength region close to 70% in the absorption characteristic.

Effectiveness of Using the TIR Band in Landsat 8 Image Classification

  • Lee, Mi Hee;Lee, Soo Bong;Kim, Yongmin;Sa, Jiwon;Eo, Yang Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.3
    • /
    • pp.203-209
    • /
    • 2015
  • This paper discusses the effectiveness of using Landsat 8 TIR (Thermal Infrared) band images to improve the accuracy of landuse/landcover classification of urban areas. According to classification results for the study area using diverse band combinations, the classification accuracy using an image fusion process in which the TIR band is added to the visible and near infrared band was improved by 4.0%, compared to that using a band combination that does not consider the TIR band. For urban area landuse/landcover classification in particular, the producer’s accuracy and user’s accuracy values were improved by 10.2% and 3.8%, respectively. When MLC (Maximum Likelihood Classification), which is commonly applied to remote sensing images, was used, the TIR band images helped obtain a higher discriminant analysis in landuse/landcover classification.

Experimental Study on the Combustion Characteristics of Magnesium using Infrared Thermography and FE-SEM (적외선 열화상법 및 FE-SEM을 활용한 마그네슘 연소특성에 관한 실험적 연구)

  • Lee, Jun-Sik;Nam, Ki-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.927-934
    • /
    • 2020
  • Magnesium powder has been widely used in various industries because it is light weight and extremely high mechanical strength including aeronautics and chemicals. However, magnesium, as a combustible metal, poses serious safety issues such as fires and explosions if it is not managed properly. Especially, magnesium's max adiabatic flame temperature is 3,340℃ and it is impossible to extinguish it by using water, CO2 and Halonagents. The aim of this study is to identify the combustion characteristics of magnesium powder. We carried out a combustion experiment, using 1 kg of magnesium (purity > 99 %, particle < 150 ㎛). The features of the magnesium burning process were scrutinized using infrared thermal image analysis. Also, a field-emission scanning electron microscope (FE-SEM) were used employed to analyze particulate composites and properties. It concludes the significant tendency of magnesium fire and light, combustion carbide's particle characteristics. This study contributes to make better prevention and response manners to magnesium fires, as well as fire investigation measures.