• 제목/요약/키워드: Infrared System

검색결과 1,704건 처리시간 0.026초

원적외선 면상발열체에 의한 온실 난방시스템의 열특성 분석 (Thermal Energy Characteristics for Greenhouse Heating System with Far-Infrared Heater)

  • 노정근;김희준;리혁;한충수;조성찬
    • Journal of Biosystems Engineering
    • /
    • 제31권6호
    • /
    • pp.529-534
    • /
    • 2006
  • The greenhouse heating system with far-infrared heater was built to analyze various thermal characteristics, such as greenhouse air temperature, soil temperature, energy flow, energy consumption in far-infrared heater, and other factors, which could be used in comparison with other greenhouse heating system in this study. The results showed that the inside air temperature of the far-infrared greenhouse heating system was $5^{\circ}C$ higher than that of hot air heating system. Heat loss of daytime was found to be larger than that of night time as much as 44.8% for the heating system with far-infrared heater. In the heating system with far-Infrared heater, when the lowest ambient temperature was -8 $\sim$ -7$^{\circ}C$, the air temperature of greenhouse was 12 $\sim$ 15$^{\circ}C$, thus the far-infrared heating system was shown to be feasible for heating system. Energy consumption of far-infrared heating system was shown to be less than that of hot air heating system.

MRI의 현황과 전망

  • 전희국
    • 대한의용생체공학회:의공학회지
    • /
    • 제9권1호
    • /
    • pp.125-130
    • /
    • 1988
  • In the conventional infrared imaging system, complex infrared lens systems are usually used for directing collimated narrow infrared beams into the high speed 2-dimensional optic scanner. In this paper, a simple reflective infrared optic system with a 2-dimensional optic scanner is proposed for the realization of medical infrared thermography system. It has been experimentally proven that the intfrared thermography system composed of the proposed optic system has the temperature resolution of $0.1^{\circ}C$ under the spatial resolution of lmrad, the image matrix size of $256 {\times} 240, $ and tile imaging time of 4 seconds.

  • PDF

Test System Design for Turbofan Engine Exhaust Infrared Signature Reduction Study

  • Jo, Hana;Kim, Jaewon;Jin, Juneyub
    • 항공우주시스템공학회지
    • /
    • 제14권6호
    • /
    • pp.85-90
    • /
    • 2020
  • The infrared signature that is associated with an aircraft is mainly caused by heat released from the engine and the exhaust plume. In this study, a test-system was designed to observe the overall infrared signature characteristics of a turbofan engine during operation under ground running conditions and the infrared reduction features that result from different exhaust nozzle configurations. A test stand was designed for the 1400 lbf class turbofan engine that included a bell-mouth type intake, fuel supply system, a measurement system, and a data acquisition/control system. The design and verification of the test system were conducted so that the basic nozzle and various 2D nozzles could be applied to study the infrared signature produced by a turbofan engine exhaust.

적외선 체열촬영시스템을 위한 광학계의 구성 (Realization of Optic Systems for the Infrared Thermography)

  • 이수열;우응제;조민형
    • 대한의용생체공학회:의공학회지
    • /
    • 제15권1호
    • /
    • pp.97-104
    • /
    • 1994
  • In the conventional infrared imaging system, complex infrared lens systems are usually used for directing collimated narrow infrared beams into the high speed 2-dimensional optic scanner. In this paper, a simple reflective infrared optic system with a 2-dimensionaloptic scanner is proposed for the realization of medical infrared thermography system. It has been experimentally proven that the infrared thermography system composed ofthe proposed optic system has the temperature resolution of $0.1{\circ}C$ under the spatial resolution of 1mrad, the image matrix size of $256{\times}240$, and the imaging time of 4 seconds.

  • PDF

Assessment and Comparison of Three Dimensional Exoscopes for Near-Infrared Fluorescence-Guided Surgery Using Second-Window Indocyanine-Green

  • Cho, Steve S.;Teng, Clare W.;Ravin, Emma De;Singh, Yash B.;Lee, John Y.K.
    • Journal of Korean Neurosurgical Society
    • /
    • 제65권4호
    • /
    • pp.572-581
    • /
    • 2022
  • Objective : Compared to microscopes, exoscopes have advantages in field-depth, ergonomics, and educational value. Exoscopes are especially well-poised for adaptation into fluorescence-guided surgery (FGS) due to their excitation source, light path, and image processing capabilities. We evaluated the feasibility of near-infrared FGS using a 3-dimensional (3D), 4 K exoscope with near-infrared fluorescence imaging capability. We then compared it to the most sensitive, commercially-available near-infrared exoscope system (3D and 960 p). In-vitro and intraoperative comparisons were performed. Methods : Serial dilutions of indocyanine-green (1-2000 ㎍/mL) were imaged with the 3D, 4 K Olympus Orbeye (system 1) and the 3D, 960 p VisionSense Iridium (system 2). Near-infrared sensitivity was calculated using signal-to-background ratios (SBRs). In addition, three patients with brain tumors were administered indocyanine-green and imaged with system 1, with two also imaged with system 2 for comparison. Results : Systems 1 and 2 detected near-infrared fluorescence from indocyanine green concentrations of >250 ㎍/L and >31.3 ㎍/L, respectively. Intraoperatively, system 1 visualized strong near-infrared fluorescence from two, strongly gadolinium-enhancing meningiomas (SBR=2.4, 1.7). The high-resolution, bright images were sufficient for the surgeon to appreciate the underlying anatomy in the near-infrared mode. However, system 1 was not able to visualize fluorescence from a weakly-enhancing intraparenchymal metastasis. In contrast, system 2 successfully visualized both the meningioma and the metastasis but lacked high resolution stereopsis. Conclusion : Three-dimensional exoscope systems provide an alternative visualization platform for both standard microsurgery and near-infrared fluorescent guided surgery. However, when tumor fluorescence is weak (i.e., low fluorophore uptake, deep tumors), highly sensitive near-infrared visualization systems may be required.

A Wide Dynamic Range NUC Algorithm for IRCS Systems

  • Cai, Li-Hua;He, Feng-Yun;Chang, Song-Tao;Li, Zhou
    • Journal of the Korean Physical Society
    • /
    • 제73권12호
    • /
    • pp.1821-1826
    • /
    • 2018
  • Uniformity is a key feature of state-of-the-art infrared focal planed array (IRFPA) and infrared imaging system. Unlike traditional infrared telescope facility, a ground-based infrared radiant characteristics measurement system with an IRFPA not only provides a series of high signal-to-noise ratio (SNR) infrared image but also ensures the validity of radiant measurement data. Normally, a long integration time tends to produce a high SNR infrared image for infrared radiant characteristics radiometry system. In view of the variability of and uncertainty in the measured target's energy, the operation of switching the integration time and attenuators usually guarantees the guality of the infrared radiation measurement data obtainted during the infrared radiant characteristics radiometry process. Non-uniformity correction (NUC) coefficients in a given integration time are often applied to a specified integration time. If the integration time is switched, the SNR for the infrared imaging will degenerate rapidly. Considering the effect of the SNR for the infrared image and the infrared radiant characteristics radiometry above, we propose a-wide-dynamic-range NUC algorithm. In addition, this essasy derives and establishes the mathematical modal of the algorithm in detail. Then, we conduct verification experiments by using a ground-based MWIR(Mid-wave Infared) radiant characteristics radiometry system with an Ø400 mm aperture. The experimental results obtained using the proposed algorithm and the traditional algorithm for different integration time are compared. The statistical data shows that the average non-uniformity for the proposed algorithm decreased from 0.77% to 0.21% at 2.5 ms and from 1.33% to 0.26% at 5.5 ms. The testing results demonstrate that the usage of suggested algorithm can improve infrared imaging quality and radiation measurement accuracy.

원적외선 난방시스템이 방울토마토 생육에 미치는 영향 (Growth Characteristics of Cherry Tomato in Greenhouse using Far Infrared Heating Systems)

  • 김희준;리혁;강태환;녕효봉;한충수;조성찬
    • Journal of Biosystems Engineering
    • /
    • 제34권3호
    • /
    • pp.161-166
    • /
    • 2009
  • This study was conducted to investigate the growth characteristics of cherry tomatoes in greenhouse using far infrared heating system. The far infrared greenhouse heating systems were installed in two ways on the greenhouse side wall and at the greenhouse ceiling. The heating characteristics of far infrared heating system were analyzed by investigating the heating load, internal temperature, energy consumption, growth characteristics and quality evaluation. The results were compared with heated air heating system using kerosene. The results showed that tomatoes grown in the greenhouse with the far infrared heating system had relatively better plant height, leaf length, leaf width, stem diameter than ones from the greenhouse with hot air heating system and both heating methods had no significant difference on Cherry tomato sugar contents. At the same time, the far infrared heating system reduced heating cost from 34.5 to 41.4% on comparing with hot air heating system.

Evaluation of Defects in the Bonded Area of Shoes using an Infrared Thermal Vision Camera

  • Kim, Jae-Yeol;Yang, Dong-Jo;Kim, Chang-Hyun
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권4호
    • /
    • pp.511-514
    • /
    • 2003
  • The Infrared Camera usually detects only Infrared waves emitted from the light in order to illustrate the temperature distribution. An Infrared diagnosis system can be applied to various fields. But the defect discrimination can be automatic or mechanized in the special shoes total inspection system. This study introduces a method for special shoes nondestructive total inspection. Performance of the proposed method is shown through thermo-Image.

적외선 열화상 카메라를 이용한 수전설비 온도분포해석 (The Analysis of Temperature Distribution Electric incoming Apparatus Using a Infrared Thermal Imaging System)

  • 정승천;임용배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.1113-1116
    • /
    • 2004
  • This paper presents the method for analyzing surface temperature of Electric incoming Apparatus. For the experiment, the surface temperature of electric power apparatus was measured and analyzed by using a infrared thermal imaging system. Surface Discharges(SD) have very complex characteristics of discharge patterns, therefore it requires the development of precise analysis methods. recently, studies on infrared thermal imaging system are carried out to analyze temperature distribution of power equipments through condition diagnosis and to diagnose the degradation of power equipments. The changes in suface temperature was measured by using the infrared thermal imaging system under hot line condition. The system was set up based on the diagnostic method of the electric incoming apparatus.

  • PDF

적외선 시스템을 이용한 지상차상통신 (Trackside to Train Communication Using Infrared System)

  • 아흐마드 수기아나;물요 사뇨토;이기서;최익
    • 한국전자통신학회논문지
    • /
    • 제11권8호
    • /
    • pp.743-750
    • /
    • 2016
  • 열차에서 지상차상통신은 데이터를 전송하기 위해 트랜스폰더 또는 발리스 (balise) 와 같은 무선장비를 일반적으로 사용하고 있다. 그러나, 이러한 종래의 방식에는 다중경로 페이딩, 대역폭소스 제한, 다른 사용자들로부터의 간섭 등 과같은 단점들이 있다. 게다가 이러한 장비가 많이 설치될 경우에는 비용이 많이 든다. 이러한 문제를 해결하기 위하여 적외선 통신 시스템을 제안하고자 한다. 적외선 시스템을 사용하여 열차의 위치 같은 데이타를 열차로 전송 할 수 있다. 적외선 통신 프로토콜은 direct dedication configuration에 실용적인 무선 데이터 통신을 제공할 수 있다. 뿐만 아니라, pole configuration경우에 적외선 시스템은 풍부한 대역폭 그리고 경제적 장비설치비용, 폭우 때 장비이용의 신뢰성까지 제공한다. 본 논문에서는 통신기능과 실행평가측정 (measurement performance evaluation)에 대한 분석을 다루었다. 제안된 지상차상통신 시스템에는 적외선 수신기 및 적외선 송신기 사이를 약 6미터 까지 전송가능하며, 송신기의 반각은 19.65도로, 수신각은 15도로 설정되었다.