• 제목/요약/키워드: Infrared Optics

검색결과 221건 처리시간 0.029초

An Optical Cavity Design for an Infrared Gas Detector Using an Off-axis Parabolic Mirror

  • Jeong, You-Jin;Kang, Dong-Hwa;Seo, Jae-Yeong;Jo, Ye-Ji;Seo, Jin-Hee;Choi, Hwan-Young;Jung, Mee-Suk
    • Current Optics and Photonics
    • /
    • 제3권5호
    • /
    • pp.374-381
    • /
    • 2019
  • This study examined a method for designing the optical cavity of a non-dispersive infrared gas detector. The infrared gas detector requires an optical cavity design to lengthen the ray path. However, the optical cavity with multiple reflecting surfaces has off-axis aberration due to the characteristics of the reflecting optical system. The rays were parallelized by using the off-axis parabolic mirror to easily increase the ray path and eliminate off-axis aberration so that the rays are admitted to the effective area of the infrared detector uniformly. A prototype of an infrared gas detector was produced with the designed optical cavity to confirm the performance.

적외선 광학렌즈용 칼코게나이드 유리의 Glass melting 조건에 따른 특성 변화 (Effect of Glass Melting Conditions on the Structural Properties of Chalcogenide Glasses for Infrared Optics)

  • 박흥수;이현용;차두환;김혜정;김정호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.167-167
    • /
    • 2010
  • Ge-Sb-Se계 칼코게나이드 유리의 Melting 조건변화에 따른 특성변화를 연구하였다. Glass melting 조건(homogenization-temperature, homogenization-time, annealing) 에 따라 제작된 칼코게나이드 유리 bulk를 FT-IR, XRD, SEM 등의 분석장비를 이용하여 특성을 분석하였다. Homogenization temperature가 높을수록 석영관 급냉 시 발생되는 mechanical stress와 내부응력차로 인해 칼코게나이드 유리 깨짐현상이 증가하였으며 조성비와 melting 조건에 따라 XRD분석에서 확인되지 않는 미소결정이 SEM 분석결과 관찰되었다. 본 연구를 통해 칼코게나이드 유리의 melting 조건에 따른 경향성을 확인할 수 있었다.

  • PDF

Opto - Mechanical Design of IGRINS Slit-viewing Camera Barrel

  • Oh, Hee-Young;Yuk, In-Soo;Park, Chan;Lee, Han-Shin;Lee, Sung-Ho;Chun, Moo-Young;Jaffe, Daniel T.
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2011년도 한국우주과학회보 제20권1호
    • /
    • pp.31.2-31.2
    • /
    • 2011
  • IGRINS (Immersion GRating INfrared Spectrometer) is a high resolution wide-band infrared spectrograph developed by Korea Astronomy and Space Science Institute (KASI) and the University of Texas at Austin (UT). The slit-viewing camera is one of four re-imaging optics in IGRINS including the input relay optics and the H- and K- band spectrograph cameras. Consisting of five lenses and one Ks-band filter, the slit viewing camera relays the infrared image of $2'{\times}2'$ field around the slit to the detector focal plane. Since IGRINS is a cryogenic instrument, the lens barrel is designed to be optimized at the operating temperature of 130 K. The barrel design also aims to achieve easy alignment and assembly. We use radial springs and axial springs to support lenses and lens spacers against the gravity and thermal contraction. Total weight of the lens barrel is estimated to be 1.2 kg. Results from structural analysis are presented.

  • PDF

Research on Subcutaneous Pulse Shape Measurement by Near-infrared Moiré Technique

  • Chen, Ying-Yun;Liu, Zhizhen;Du, Jian;Chang, Rong-Seng
    • Journal of the Optical Society of Korea
    • /
    • 제19권2호
    • /
    • pp.123-129
    • /
    • 2015
  • A pulse is generated when the heart pumps blood into the arterial system. The heart pumps blood only when it contracts, not when it relaxes; therefore, blood enters the arterial system in a cyclical form. Artery beating is visible in some parts of the body surface, such as the radial artery of the wrist. This paper mainly uses the feature in which near-infrared spectroscopy penetrates skin to construct a non-invasive measurement system that can measure small vibration in the subcutaneous tissue of the human body, and then uses it for the pulse measurement. This measurement system uses the optical moir$\acute{e}$ principle, together with the fringe displacement made by small vibration in the subcutaneous tissue, and an image analysis program to calculate the height variation from small vibrations in the subcutaneous tissue. It completes a measurement system that records height variation with time, and that together with a fast Fourier transform (FFT) program, they can convert the pulse waveform generated by vibration (time-amplitude) to heartbeat frequency (frequency-amplitude). This is a new and non-invasive medical assistance system for measuring the pulse of the human body, with the advantages of being simple, fast, safe and objective.

LEGACY OF THE SPICA CORONAGRAPH INSTRUMENT (SCI): TOWARD EXOPLANETARY SCIENCE WITH SPACE INFRARED TELESCOPES IN THE FUTURE

  • Enya, Keigo
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.347-349
    • /
    • 2017
  • This paper reviews the legacy of the SPCIA Coronagraph Instrument (SCI) of which the primary scientific objective is the characterization of Jovian exoplanets by coronagraphic spectroscopy in the infrared. Studies on binary shaped pupil mask coronagraphs are described. Cryogenic active optics is discussed as another key technology. Then approaches to observing habitable zones in exoplanetary systems with a passively-cooled space infrared telescope are discussed. The SCI was dropped in a drastic change of the SPICA mission. However, its legacy is useful for space-borne infrared telescopes dedicated for use in exoplanetary science in the future, especially for studies of biomarkers.

JAPAN 8M TELESCOPE: SUBARU PROJECT

  • IYE MASANORI
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.371-374
    • /
    • 1996
  • An updated project status review of the Japan 8m telescope, Subaru, scheduled for its first light in the second quater of 1998 atop Mauna Kea is given.

  • PDF

열적외선 카메라용 광학계 생산성 향상에 관한 연구 (A Study on the Productivity Improvement of Thermal Infrared Camera an Optical Lens)

  • 김성용;현동훈
    • 한국생산제조학회지
    • /
    • 제18권3호
    • /
    • pp.285-293
    • /
    • 2009
  • Thermal infrared cameras have been conducted actively in various application areas, such as military, medical service, industries and cars. Because of their characteristic of sensing the radiant heat emitted from subjects in the range of long-wavelength($3{\sim}5{\mu}m$ or $8{\sim}12{\mu}m$), and of materializing a vision system, when general optics materials are used, they don't react to the light in the range of long-wavelength, and can't display their optic functions. Therefore, the materials with the feature of higher refractive index, reacting to the range of long-wavelength, are to be used. The kinds of materials with the characteristic of higher refractive index are limited, and their features are close to those of metals. Because of these metallic features, the existing producing method of optical systems were direct manufacturing method using grinding method or CAD/CAM, which put limit on productivity and made it difficult to properly cope with the increasing demand of markets. GASIR, a material, which can be molded easily, was selected among infrared ray optics materials in this study, and the optical system was designed with two Aspheric lenses. Because the lenses are molded in the environment of high temperature and high pressure, they require a special metallic pattern. The metallic pattern was produced with materials with ultra hardness that can stand high temperature and high pressure. As for the lens mold, GMP(Glass Molding Press) of the linear transfer method was used in order to improve the productivity of optical systems for thermal infrared cameras, which was the goal of this paper.

  • PDF

가시광선과 원적외선 듀얼카메라의 영상 정합도 향상을 위한 동축광학계 설계 및 분석 (Design and Analysis of Coaxial Optical System for Improvement of Image Fusion of Visible and Far-infrared Dual Cameras)

  • 강규리;김영일;손병수;박진영
    • 한국광학회지
    • /
    • 제34권3호
    • /
    • pp.106-116
    • /
    • 2023
  • 본 논문에서는 가시광선과 원적외선 전반의 파장대역에 걸쳐 사용 가능한 동축 듀얼카메라를 설계 및 분석하였다. 광학계는 빔 스플리터를 이용한 동축광학계 시스템으로 설계되었으며, 가시광선 광학계에서 적외선으로 인한 열 전달을 최소화하기 위해 hot mirror 타입의 빔 스플리터를 사용하였다. 원적외선 카메라는 비냉각형 검출기로 640×480의 센서 배열을 가지고, 가시광선은 1,945×1,097의 센서를 사용한다. 최적화 과정을 거친 후 최종 설계된 광학계의 정합도는 90% 이상이며, 기존에 존재하던 듀얼카메라에 비해 정합도가 향상된 효율적인 설계 결과를 얻었고, 테스트를 통해 향상된 정합도를 확인하였다.

몰드성형 광학렌즈를 이용한 의료기기용 열화상카메라 체열진단의 적용도 평가 (Evaluation of Thermography Camera Using Molded Optical Lens for Medical Applications)

  • 유성미;김혜정
    • 한국전기전자재료학회논문지
    • /
    • 제26권8호
    • /
    • pp.624-628
    • /
    • 2013
  • With the recent development of less-costly uncooled detector technology, expensive optics are among the remaining significant cost drivers in the thermography camera. As a potential solution to this problem, the fabrication of IR lenses using chalcogenide glass has been studied in recent years. We report on the molding and evaluation of a ultra-precision chalcogenide-glass lens for the thermography camera for body-temperature monitoring. In addition, we fabricated prototype thermography camera using the chalcogenide-glass lens and obtained the thermal image from the camera. In this work, it was found out that thermography camera discerned body-temperature between 20 and $50^{\circ}C$ through the analysis of thermal image. It is confirmed that thermography camera using the chalcogenide-glass lens is applicable to the body-temperature monitoring system.

Comparative Vibrational Spectroscopic Studies Between Nickel, Zinc Tetraphenylporphyrins and Tetraphenylchlorins

  • 송옥근;윤민중;장재린;김동호
    • Bulletin of the Korean Chemical Society
    • /
    • 제10권1호
    • /
    • pp.39-51
    • /
    • 1989
  • The infrared and resonance Raman spectra are reported for nickel and zinc tetraphenylchlorins. It is found that the IR and RR spectra become more complicated compared with the corresponding porphyrin analogs due to the symmetry changes. Some vibrational parameters like the core size and the symmetry change are examined in accordance with vibrational spectra of other type of chlorins.