• 제목/요약/키워드: Infrared: stars

검색결과 224건 처리시간 0.021초

Wide-orbit companion candidates and Stellar Disk around T-Tauri Star

  • Oh, Daehyun;Tamura, Motohide
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.86.1-86.1
    • /
    • 2014
  • Two substellar companion candidates with planetary mass, around a T-Tauri star in the ${\rho}$ Ophiuchi star-forming region, are discovered by results of Subaru Telescope's near-infrared imaging. Candidates are separated by 1400au and 500au. If these candidates were real companions, they are the widest-orbit and the lowest mass planetary-mass companions(PMCs) candidates. This discovery may suggest that PMCs form via extreme case of cloud core fragmentation for multiple stars. And also stellar disk are imaged by HiCIAO, hight contrast instrument for exoplanets and disks, with Subaru Telescope. This could be the first case, which imaged both of planetary mass companions and disk around same star. Even two companions candidates are not bounded around the star, they still could be one of the lowest mass objects. In this presentation, I will discuss about observations and confirmations of these objects, and the latest results about their properties.

  • PDF

HIGH RESOLUTION NEAR-INFRARED SPECTRA OF NEARBY QUASAR, PG1426+015

  • ;;임명신
    • 천문학회보
    • /
    • 제37권1호
    • /
    • pp.51.1-51.1
    • /
    • 2012
  • We observed low-z quasar PG1426+015 (z=0.086), using the near-IR high resolution echelle spectrometer, IRCS, at the SUBARU 8.2 m telescope. Using an Adoptive Optics system, the full width at half maximum of the point spread function was about 0.3 arcsec, which can effectively separate the quasar spectra from the host galaxy spectra. We also maximize the total exposure time up to several hours per target, and develop data reduction methods to increase the signal-to-noise ratios. This poster presents the data reduction processes and sample spectra from the quasar and its host galaxy. These spectral lines will be used to study the physical mechanism of quasars, and the velocity dispersions of the stars in the bugle of the host galaxy.

  • PDF

MICROLENSING BY KUIPER, OORT, AND FREE-FLOATING PLANETS

  • GOULD, ANDREW
    • 천문학회지
    • /
    • 제49권4호
    • /
    • pp.123-126
    • /
    • 2016
  • Microlensing is generally thought to probe planetary systems only out to a few Einstein radii. Microlensing events generated by bound planets beyond about 10 Einstein radii generally do not yield any trace of their hosts, and so would be classified as free floating planets (FFPs). I show that it is already possible, using adaptive optics (AO), to constrain the presence of potential hosts to FFP candidates at separations comparable to the Oort Cloud. With next-generation telescopes, planets at Kuiper-Belt separations can be probed. Next generation telescopes will also permit routine vetting for all FFP candidates, simply by obtaining second epochs 4-8 years after the event. At present, the search for such hosts is restricted to within the "confusion limit" of θconfus ∼ 0.25′′, but future WFIRST (Wide Field Infrared Survey Telescope) observations will allow one to probe beyond this confusion limit as well.

PHOTOMETRIC STUDY OF IC 2156

  • TADROSS, A.L.;HENDY, Y.H.M.
    • 천문학회지
    • /
    • 제49권2호
    • /
    • pp.53-57
    • /
    • 2016
  • We present an optical UBVRI photometric analysis of the poorly studied open star cluster IC 2156 using Sloan Digital Sky Survey data in order to estimate its astrophysical properties. We compare these with results from our previous studies that relied on the 2MASS JHK near-infrared photometry. The stellar density distributions and color-magnitude diagrams of the cluster are used to determine its geometrical structure, real radius, core and tidal radii, and its distance from the Sun, the Galactic plane, and the Galactic center. We also estimate, the age, color excesses, reddening-free distance modulus, membership, total mass, luminosity function, mass function, and relaxation time of the cluster.

UKIRT Widefield Infrared Survey for [Fe II] $1.64{\mu}m$

  • 이재준;구본철
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.97.1-97.1
    • /
    • 2012
  • NIR Emission lines from singly-ionized Iron, in particular [Fe II] $1.64{\mu}m$, are good tracer of dense atomic gas in star-forming regions, around evolved stars, and in supernova remnants. We are imaging about 180 square degrees along the Galactic Plane ($6^{\circ}$ < l < $65^{\circ}$;$-1.5^{\circ}$ < b < $+1.5^{\circ}$) with the narrow band filter centered on the [Fe II] $1.64{\mu}m$ line using WFCAM at UKIRT. The observations will complement the UWISH2 survey, which have imaged the same area with the narrow band filter centered on the molecular hydrogen 1-0 S(1) emission line at $2.12{\mu}m$, and probe a dynamically active component of ISM. We present the goals and preliminary results of our survey.

  • PDF

Nature of Fe II fluorescent lines in Luminous Blue Variables

  • 이재준;장석준;선광일;김현정
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.51.2-51.2
    • /
    • 2020
  • Luminous blue variables (LBVs) are massive evolved stars that show unpredictable photometric and spectral variation. It is generally assumed that they undergo one or more of large eruptions. We have obtained high dispersion NIR spectra of several LBVs with Immersion GRating INfrared Spectrometer (IGRINS). One notable feature in their IGRINS spectra is the existence of broad lines (~ a few hundred km/s) with unusual boxy profile. They are fluorescent lines of Fe II by Lyman α photons in the stellar wind. However, modeling of these lines with radiative transfer code CMFGEN predicts much weaker line strength. We propose that incorporating broadening of Lyman α line by scattering processes in dense wind can enhance the Fe II fluorescent lines. We further discuss how these Fe II fluorescent lines can be used to characterize massive LBV wind.

  • PDF

An exosolar planetary system N-body simuInfrared Spectro-Photometric Survey in Space: NISS and SPHEREx Missions

  • Jeong, Woong-Seob;Kim, Minjin;Im, Myungshin;Lee, Jeong-Eun;Pyo, Jeonghyun;Song, Yong-Seon;Park, Sung-Joon;Moon, Bongkon;Lee, Dae-Hee;Park, Won-Kee;Jo, Youngsoo;Lee, Duk-Hang;Ko, Kyeongyeon;Kim, Il-Joong;Park, Youngsik;Yang, Yujin;Ko, Jongwan;Lee, Hyung Mok;Shim, Hyunjin;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.47.1-47.1
    • /
    • 2018
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 have successfully developed by KASI. The capability of both imaging and spectroscopy is a unique function of the NISS. At first, it have realized the low-resolution spectroscopy (R~20) with a wide field of view of $2{\times}2deg$. in a wide near-infrared range from 0.95 to $2.5{\mu}m$. The major scientific mission is to study the cosmic star formation history in local and distant universe. It will also demonstrate the space technologies related to the infrared spectro-photometry in space. Now, the NISS is ready to launch in late 2018. After the launch, the NISS will be operated during 2 years. As an extension of the NISS, the SPEHREx (Spectro-Photometer for the History of the Universe Epoch of Reionization, and Ices Explorer) is the NASA MIDEX (Medium-class Explorer) mission proposed together with KASI (PI Institute: Caltech). It will perform the first all-sky infrared spectro-photometric survey to probe the origin of our Universe, to explore the origin and evolution of galaxies, and to explore whether planets around other stars could harbor life. Compared to the NISS, the SPHEREx is designed to have much more wide FoV of $3.5{\times}11.3deg$. as well as wide spectral range from 0.75 to $5.0{\mu}m$. After passing the first selection process, the SPHEREx is under the Phase-A study. The final selection will be made in the end of 2018. Here, we report the status of the NISS and SPHEREx missions.

  • PDF

Extragalactic Sciences from SPICA/FPC-S

  • 정웅섭;;임명신;이형목;이정은;;;;이대희;표정현;박성준;문봉곤;박귀종;박영식;한원용;남욱원
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.36.2-36.2
    • /
    • 2013
  • The SPICA (SPace Infrared Telescope for Cosmology & Astrophysics) project is a next-generation infrared space telescope optimized for mid- and far-infrared observation with a cryogenically cooled 3m-class telescope. The focal plane instruments onboard SPICA will enable us to resolve many astronomical key issues from the formation and evolution of galaxies to the planetary formation. The FPC-S (Focal Plane Camera - Sciecne) is a near-infrared instrument proposed by Korea as an international collaboration. Owing to the capability of both low-resolution imaging spectroscopy and wide-band imaging with a field of view of $5^{\prime}{\times}5^{\prime}$, it has large throughput as well as high sensitivity for diffuse light compared with JWST. In order to strengthen advantages of the FPC-S, we propose the studies of probing population III stars by the measurement of cosmic near-infrared background radiation and the star formation history at high redshift by the discoveries of active star-forming galaxies. In addition to the major scientific targets, to survey large area opens a new parameter space to investigate the deep Universe. The good survey capability in the parallel imaging mode allows us to study the rare, bright objects such as quasars, bright star-forming galaxies in the early Universe as a way to understand the formation of the first objects in the Universe, and ultra-cool brown dwarfs. Observations in the warm mission will give us a unique chance to detect high-z supernovae, ices in young stellar objects (YSOs) even with low mass, the $3.3{\mu}$ feature of shocked circumstance in supernova remnants. Here, we report the current status of SPICA/FPC project and its extragalactic sciences.

  • PDF

Infrared Spectro-Photomeric Survey Missions: NISS & SPHEREx

  • Jeong, Woong-Seob;Yang, Yujin;Park, Sung-Joon;Pyo, Jeonghyun;Kim, Minjin;Moon, Bongkon;Lee, Dae-Hee;Park, Won-Kee;Park, Young-Sik;Jo, Youngsoo;Kim, Il-Joong;Ko, Jongwan;Seo, Hyun Jong;Ko, Kyeongyeon;Kim, Seongjae;Hwang, Hoseong;Song, Yong-Seon;Lee, Jeong-Eun;Im, Myungshin;Matsumoto, Toshio
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.57.2-57.2
    • /
    • 2019
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 was successfully launched on last December and is now under the operation phase. The capability of both imaging and spectroscopy is a unique function of the NISS. It has realized the imaging spectroscopy (R~20) with a wide field of view of $2{\times}2deg$. in a wide near-infrared range from 0.95 to $2.5{\mu}m$. The major scientific mission is to study the cosmic star formation history in the local and distant universe. It also demonstrated the space technologies related to the infrared spectro-photometry in space. The NISS is performing the imaging spectroscopic survey for local star-forming galaxies, clusters of galaxies, star-forming regions, ecliptic deep fields and so on. As an extension of the NISS, the SPEHREx (Spectro-Photometer for the History of the Universe Epoch of Reionization, and Ices Explorer) was selected as the NASA MIDEX (Medium-class Explorer) mission (PI Institute: Caltech). As an international partner, KASI will participate in the development and the science for SPHEREx. It will perform the first all-sky infrared spectro-photometric survey to probe the origin of our Universe, to explore the origin and evolution of galaxies, and to explore whether planets around other stars could harbor life. Compared to the NISS, the SPHEREx is designed to have a much wider FoV of $3.5{\times}11.3deg$. as well as wider spectral range from 0.75 to $5.0{\mu}m$. Here, we introduce the status of the two space missions.

  • PDF

G192.8-1.1: A CANDIDATE OF AN EVOLVED THERMAL COMPOSITE SUPERNOVA REMNANT REIGNITED BY NEARBY MASSIVE STARS

  • Kang, Ji-Hyun;Koo, Bon-Chul;Byun, Do-Young
    • 천문학회지
    • /
    • 제47권6호
    • /
    • pp.259-277
    • /
    • 2014
  • G192.8-1.1 has been known as one of the faintest supernova remnants (SNRs) in the Galax until the radio continuum of G192.8-1.1 is proved to be thermal by Gao et al. (2011). Yet, the nature of G192.8-1.1 has not been fully investigated. Here, we report the possible discovery of faint non-thermal radio continuum components with a spectral index ${\alpha}{\sim}0.56(S_{\nu}{\propto}{\nu}^{-{\alpha}})$ around G192.8-1.1, while of the radio continuum emission is thermal. Also, our Arecibo $H_I$ data reveal an $H_I$ shell, expanding with an expansion velocity of $20-60km\;s^{-1}$, that has an excellent morphological correlation with the radio continuum emission. The estimated physical parameters of the $H_I$ shell and the possible association of non-thermal radio continuum emission with it suggest G192.8-1.1 to be an~0.3 Myr-old SNR. However, the presence of thermal radio continuum implies the presence of early-type stars in the same region. One possibility is that a massive star is ionizing the interior of an old SNR. If it is the case, the electron distribution assumed by the centrally-peaked surface brightness of thermal emission implies that G192.8-1.1 is a "thermal-composite" SNR, rather than a typical shell-type SNR, where the central hot gas that used to be bright in X-rays has cooled down. Therefore, we propose that G192.8-1.1 is an old evolved thermal-composite SNR showing recurring emission in the radio continuum due to a nearby massive star. The infrared image supports that the $H_I$ shell of G192.8-1.1 is currently encountering a nearby star forming region that possibly contains an early type star(s).