• Title/Summary/Keyword: Infra-red camera

Search Result 85, Processing Time 0.026 seconds

Synthetic Infra-Red Image Dataset Generation by CycleGAN based on SSIM Loss Function (SSIM 목적 함수와 CycleGAN을 이용한 적외선 이미지 데이터셋 생성 기법 연구)

  • Lee, Sky;Leeghim, Henzeh
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.476-486
    • /
    • 2022
  • Synthetic dynamic infrared image generation from the given virtual environment is being the primary goal to simulate the output of the infra-red(IR) camera installed on a vehicle to evaluate the control algorithm for various search & reconnaissance missions. Due to the difficulty to obtain actual IR data in complex environments, Artificial intelligence(AI) has been used recently in the field of image data generation. In this paper, CycleGAN technique is applied to obtain a more realistic synthetic IR image. We added the Structural Similarity Index Measure(SSIM) loss function to the L1 loss function to generate a more realistic synthetic IR image when the CycleGAN image is generated. From the simulation, it is applicable to the guided-missile flight simulation tests by using the synthetic infrared image generated by the proposed technique.

Online Human Tracking Based on Convolutional Neural Network and Self Organizing Map for Occupancy Sensors (점유 센서를 위한 합성곱 신경망과 자기 조직화 지도를 활용한 온라인 사람 추적)

  • Gil, Jong In;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.23 no.5
    • /
    • pp.642-655
    • /
    • 2018
  • Occupancy sensors installed in buildings and households turn off the light if the space is vacant. Currently PIR(pyroelectric infra-red) motion sensors have been utilized. Recently, the researches using camera sensors have been carried out in order to overcome the demerit of PIR that cannot detect stationary people. The detection of moving and stationary people is a main functionality of the occupancy sensors. In this paper, we propose an on-line human occupancy tracking method using convolutional neural network (CNN) and self-organizing map. It is well known that a large number of training samples are needed to train the model offline. To solve this problem, we use an untrained model and update the model by collecting training samples online directly from the test sequences. Using videos capurted from an overhead camera, experiments have validated that the proposed method effectively tracks human.

Design and Evaluation of Intelligent Helmet Display System (지능형 헬멧시현시스템 설계 및 시험평가)

  • Hwang, Sang-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.417-428
    • /
    • 2017
  • In this paper, we describe the architectural design, unit component hardware design and core software design(Helmet Pose Tracking Software and Terrain Elevation Data Correction Software) of IHDS(Intelligent Helmet Display System), and describe the results of unit test and integration test. According to the trend of the latest helmet display system, the specifications which includes 3D map display, FLIR(Forward Looking Infra-Red) display, hybrid helmet pose tracking, visor reflection type of binocular optical system, NVC(Night Vision Camera) display, lightweight composite helmet shell were applied to the design. Especially, we proposed unique design concepts such as the automatic correction of altitude error of 3D map data, high precision image registration, multi-color lighting optical system, transmissive image emitting surface using diffraction optical element, tracking camera minimizing latency time of helmet pose estimation and air pockets for helmet fixation on head. After completing the prototype of all system components, unit tests and system integration tests were performed to verify the functions and performance.

CNN-based People Recognition for Vision Occupancy Sensors (비전 점유센서를 위한 합성곱 신경망 기반 사람 인식)

  • Lee, Seung Soo;Choi, Changyeol;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.23 no.2
    • /
    • pp.274-282
    • /
    • 2018
  • Most occupancy sensors installed in buildings, households and so forth are pyroelectric infra-red (PIR) sensors. One of disadvantages is that PIR sensor can not detect the stationary person due to its functionality of detecting the variation of thermal temperature. In order to overcome this problem, the utilization of camera vision sensors has gained interests, where object tracking is used for detecting the stationary persons. However, the object tracking has an inherent problem such as tracking drift. Therefore, the recognition of humans in static trackers is an important task. In this paper, we propose a CNN-based human recognition to determine whether a static tracker contains humans. Experimental results validated that human and non-humans are classified with accuracy of about 88% and that the proposed method can be incorporated into practical vision occupancy sensors.

Local Thresholding for Night Surveillance Image Using IR-LED (조명용 IR-LED를 이용한 야간감시영상에서의 국부이진화 방법)

  • Park, Moo-Kyung;Kim, Ki-Wan;Moon, Kyoung-Sup;Moon, Nam-Su
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.245-246
    • /
    • 2007
  • Recently, the problem of binarization in night surveillance image using IR-LED(InfraRed-LED) is an issue because the same object has different intensity in the image according to the distance between camera and the object. This paper introduces a new local thresholding technique based on the relative intensity of IR-LED that is acquired with the camera and installation informations.

  • PDF

Multispectral Mural Underdrawing Mosaic Technique (다중스펙트럼 기반 벽화 밑그림 영상 모자익 기법)

  • 이태성;권용무;고한석
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.175-183
    • /
    • 2004
  • In this paper, we propose a new accurate and robust image mosaic technique of the mural underdrawing taken from the infra-red camera, which is based on multiple image registration and adaptive blending technique. The image mosaicing methods which have been developed so far have the following deficits. It is hard to generate a high resolution image when there are regions that do not have features or intensity gradients, and there is a trade-off in overlapping region size in view of registration and blending. We consider these issues as follows. First, in order to mosaic images with neither noticeable features nor intensity gradients, we use a projected supplementary pattern and pseudo color image for features in the image pieces which are registered. Second, we search the overlapping region size with minimum blending error between two adjacent images and then apply blending technique to minimum error overlapping region. Finally, we could find our proposed method is more effective and efficient for image mosaicing than conventional mosaic techniques and also is more adequate for the application of infra-red mural underdrawing mosaicing. Experimental results show the accuracy and robustness of the algorithm

Non-restraint Master Interface of Minimally Invasive Surgical Robot Using Hand Motion Capture (손동작 영상획득을 이용한 최소침습수술로봇 무구속 마스터 인터페이스)

  • Jang, Ik-Gyu
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.3
    • /
    • pp.105-111
    • /
    • 2016
  • Introduction: Surgical robot is the alternative instrument that substitutes the difficult and precise surgical operation; should have intuitiveness operationally to transfer natural motions. There are limitations of hand motion derived from contacting mechanical handle in the surgical robot master interface such as mechanical singularity, isotropy, coupling problems. In this paper, we will confirm and verify the feasibility of intuitive Non-restraint master interface which tracking the hand motion using infra-red camera and only 3 reflective markers without the hardware handle for the surgical robot master interface. Materials & methods: We configured S/W and H/W system; arranged 6 infra-red cameras and attached 3 reflective markers on hands for measuring 3 dimensional coordinate then we find the 7 motions of grasp, yaw, pitch, roll, px, py, pz. And we connected Virtual-Master to the slave surgical robot(Laparobot) and observed the feasibility. To verify the result of motion, we compare the result of Non-restraint master and that of clinometer (and protractor) through measuring 0~180 degree, 10degree interval, 1000 samples and recorded standard deviation stands for error rate of the value. Results: We confirmed that the average angle values of Non-restraint master interface is accurately corresponds to the result of clinometer (and protractor) and have low error rates during motion. Investigation & Conclusion: In this paper, we confirmed the feasibility and accuracy of 3D Non-restraint master interface that can offer the intuitive motion of non-contact hardware handle. As a result, we can expect the high intuitiveness, dexterousness of surgical robot.

Evaluating Reliability of Rooftop Thermal Infrared Image Acquired at Oblique Vantage Point of Super High-rise Building (초고층건물의 사각조망에서 촬영된 지붕표면 열화상의 신뢰도 평가)

  • Ryu, Taek-Hyoung;Um, Jung-Sup
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.5
    • /
    • pp.51-59
    • /
    • 2013
  • It is usual to evaluate the performance of the cool roof by measuring in-site rooftop temperature using thermal infra-red camera. The principal advantage of rooftop thermal infrared image acquired in oblique vantage point of super high-rise building as a remote sensor is to provide, in a cost-effective manner, area-wide information required for a scattered rooftop target with different colors, utilizing wide view angle and multi-temporal data coverage. This research idea was formulated by incorporating the concept of traditional remote sensing into rooftop temperature monitoring. Correlations between infrared image of super high-rise building and in-situ data were investigated to compare rooftop surface temperature for a total of four different rooftop locations. The results of the correlations analyses indicate that the rooftop surface temperature by the infrared images of super high-rise building alone could be explained yielding $R^2$ values of 0.951. The visible permanent record of the oblique thermal infra-red image was quite useful in better understanding the nature and extent of rooftop color that occurs in sampling points. This thermal infrared image acquired in oblique vantage point of super high-rise made it possible to identify area wide patterns of rooftop temperature change subject to many different colors, which cannot be acquired by traditional in-site field sampling. The infrared image of super high-rise building breaks down the usual concept of field sampling established as a conventional cool roof performance evaluation technique.

Study of the Diffusion of Phosphorus Dependent on Temperatures for Selective Emitter Doping Process of Atmospheric Pressure Plasma (대기압 플라즈마의 선택적 도핑 공정에서 온도에 의한 인(Phosphorus)의 확산연구)

  • Kim, Sang Hun;Yun, Myoung Soo;Park, Jong In;Koo, Je Huan;Kim, In Tae;Choi, Eun Ha;Cho, Guangsup;Kwon, Gi-Chung
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.5
    • /
    • pp.227-232
    • /
    • 2014
  • In this study, we propose the application of doping process technology for atmospheric pressure plasma. The plasma treatment means the wafer is warmed via resistance heating from current paths. These paths are induced by the surface charge density in the presence of illuminating Argon atmospheric plasmas. Furthermore, it is investigated on the high-concentration doping to a selective partial region in P type solar cell wafer. It is identified that diffusion of impurities is related to the wafer temperature. For the fixed plasma treatment time, plasma currents were set with 40, 70, 120 mA. For the processing time, IR(Infra-Red) images are analyzed via a camera dependent on the temperature of the P type wafer. Phosphorus concentrations are also analyzed through SIMS profiles from doped wafer. According to the analysis for doping process, as applied plasma currents increase, so the doping depth becomes deeper. As the junction depth is deeper, so the surface resistance is to be lowered. In addition, the surface charge density has a tendency inversely proportional to the initial phosphorus concentration. Overall, when the plasma current increases, then it becomes higher temperatures in wafer. It is shown that the diffusion of the impurity is critically dependent on the temperature of wafers.

A Hybrid Navigation System for Intelligent Wheelchair (지능형 휠체어를 위한 하이브리드 내비게이션 시스템)

  • Ko, Eun-Jeong;Ju, Jin-Sun;Kim, Eun-Yi
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.552-557
    • /
    • 2009
  • In this paper, we propose hybrid navigation system, for obstacle detection and avoidance in Intelligent wheelchairs (IWs). To robustly detect obstacles and avoid them on various environments, hybrid navigation system combines both range-sensor and camera information. For this, 10 range-sensors (2 ultrasonic and 8 infra-red sensors) and CCD camera are used. Through processing the informations obtained from those sensors, our system can detect obstacles with various sizes and shapes, and then avoid them. To assess the effectiveness of the proposed hybrid navigation system, it was tested on complex environments including various obstacles, then the results showed the potential of our system as mobility aids for disabled people.

  • PDF