• Title/Summary/Keyword: Information search cost

Search Result 507, Processing Time 0.028 seconds

Development of Agent-based Platform for Coordinated Scheduling in Global Supply Chain (글로벌 공급사슬에서 경쟁협력 스케줄링을 위한 에이전트 기반 플랫폼 구축)

  • Lee, Jung-Seung;Choi, Seong-Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.213-226
    • /
    • 2011
  • In global supply chain, the scheduling problems of large products such as ships, airplanes, space shuttles, assembled constructions, and/or automobiles are complicated by nature. New scheduling systems are often developed in order to reduce inherent computational complexity. As a result, a problem can be decomposed into small sub-problems, problems that contain independently small scheduling systems integrating into the initial problem. As one of the authors experienced, DAS (Daewoo Shipbuilding Scheduling System) has adopted a two-layered hierarchical architecture. In the hierarchical architecture, individual scheduling systems composed of a high-level dock scheduler, DAS-ERECT and low-level assembly plant schedulers, DAS-PBS, DAS-3DS, DAS-NPS, and DAS-A7 try to search the best schedules under their own constraints. Moreover, the steep growth of communication technology and logistics enables it to introduce distributed multi-nation production plants by which different parts are produced by designated plants. Therefore vertical and lateral coordination among decomposed scheduling systems is necessary. No standard coordination mechanism of multiple scheduling systems exists, even though there are various scheduling systems existing in the area of scheduling research. Previous research regarding the coordination mechanism has mainly focused on external conversation without capacity model. Prior research has heavily focuses on agent-based coordination in the area of agent research. Yet, no scheduling domain has been developed. Previous research regarding the agent-based scheduling has paid its ample attention to internal coordination of scheduling process, a process that has not been efficient. In this study, we suggest a general framework for agent-based coordination of multiple scheduling systems in global supply chain. The purpose of this study was to design a standard coordination mechanism. To do so, we first define an individual scheduling agent responsible for their own plants and a meta-level coordination agent involved with each individual scheduling agent. We then suggest variables and values describing the individual scheduling agent and meta-level coordination agent. These variables and values are represented by Backus-Naur Form. Second, we suggest scheduling agent communication protocols for each scheduling agent topology classified into the system architectures, existence or nonexistence of coordinator, and directions of coordination. If there was a coordinating agent, an individual scheduling agent could communicate with another individual agent indirectly through the coordinator. On the other hand, if there was not any coordinating agent existing, an individual scheduling agent should communicate with another individual agent directly. To apply agent communication language specifically to the scheduling coordination domain, we had to additionally define an inner language, a language that suitably expresses scheduling coordination. A scheduling agent communication language is devised for the communication among agents independent of domain. We adopt three message layers which are ACL layer, scheduling coordination layer, and industry-specific layer. The ACL layer is a domain independent outer language layer. The scheduling coordination layer has terms necessary for scheduling coordination. The industry-specific layer expresses the industry specification. Third, in order to improve the efficiency of communication among scheduling agents and avoid possible infinite loops, we suggest a look-ahead load balancing model which supports to monitor participating agents and to analyze the status of the agents. To build the look-ahead load balancing model, the status of participating agents should be monitored. Most of all, the amount of sharing information should be considered. If complete information is collected, updating and maintenance cost of sharing information will be increasing although the frequency of communication will be decreasing. Therefore the level of detail and updating period of sharing information should be decided contingently. By means of this standard coordination mechanism, we can easily model coordination processes of multiple scheduling systems into supply chain. Finally, we apply this mechanism to shipbuilding domain and develop a prototype system which consists of a dock-scheduling agent, four assembly- plant-scheduling agents, and a meta-level coordination agent. A series of experiments using the real world data are used to empirically examine this mechanism. The results of this study show that the effect of agent-based platform on coordinated scheduling is evident in terms of the number of tardy jobs, tardiness, and makespan.

Ontology-based Course Mentoring System (온톨로지 기반의 수강지도 시스템)

  • Oh, Kyeong-Jin;Yoon, Ui-Nyoung;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.149-162
    • /
    • 2014
  • Course guidance is a mentoring process which is performed before students register for coming classes. The course guidance plays a very important role to students in checking degree audits of students and mentoring classes which will be taken in coming semester. Also, it is intimately involved with a graduation assessment or a completion of ABEEK certification. Currently, course guidance is manually performed by some advisers at most of universities in Korea because they have no electronic systems for the course guidance. By the lack of the systems, the advisers should analyze each degree audit of students and curriculum information of their own departments. This process often causes the human error during the course guidance process due to the complexity of the process. The electronic system thus is essential to avoid the human error for the course guidance. If the relation data model-based system is applied to the mentoring process, then the problems in manual way can be solved. However, the relational data model-based systems have some limitations. Curriculums of a department and certification systems can be changed depending on a new policy of a university or surrounding environments. If the curriculums and the systems are changed, a scheme of the existing system should be changed in accordance with the variations. It is also not sufficient to provide semantic search due to the difficulty of extracting semantic relationships between subjects. In this paper, we model a course mentoring ontology based on the analysis of a curriculum of computer science department, a structure of degree audit, and ABEEK certification. Ontology-based course guidance system is also proposed to overcome the limitation of the existing methods and to provide the effectiveness of course mentoring process for both of advisors and students. In the proposed system, all data of the system consists of ontology instances. To create ontology instances, ontology population module is developed by using JENA framework which is for building semantic web and linked data applications. In the ontology population module, the mapping rules to connect parts of degree audit to certain parts of course mentoring ontology are designed. All ontology instances are generated based on degree audits of students who participate in course mentoring test. The generated instances are saved to JENA TDB as a triple repository after an inference process using JENA inference engine. A user interface for course guidance is implemented by using Java and JENA framework. Once a advisor or a student input student's information such as student name and student number at an information request form in user interface, the proposed system provides mentoring results based on a degree audit of current student and rules to check scores for each part of a curriculum such as special cultural subject, major subject, and MSC subject containing math and basic science. Recall and precision are used to evaluate the performance of the proposed system. The recall is used to check that the proposed system retrieves all relevant subjects. The precision is used to check whether the retrieved subjects are relevant to the mentoring results. An officer of computer science department attends the verification on the results derived from the proposed system. Experimental results using real data of the participating students show that the proposed course guidance system based on course mentoring ontology provides correct course mentoring results to students at all times. Advisors can also reduce their time cost to analyze a degree audit of corresponding student and to calculate each score for the each part. As a result, the proposed system based on ontology techniques solves the difficulty of mentoring methods in manual way and the proposed system derive correct mentoring results as human conduct.

A Lifelog Management System Based on the Relational Data Model and its Applications (관계 데이터 모델 기반 라이프로그 관리 시스템과 그 응용)

  • Song, In-Chul;Lee, Yu-Won;Kim, Hyeon-Gyu;Kim, Hang-Kyu;Haam, Deok-Min;Kim, Myoung-Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.9
    • /
    • pp.637-648
    • /
    • 2009
  • As the cost of disks decreases, PCs are soon expected to be equipped with a disk of 1TB or more. Assuming that a single person generates 1GB of data per month, 1TB is enough to store data for the entire lifetime of a person. This has lead to the growth of researches on lifelog management, which manages what people see and listen to in everyday life. Although many different lifelog management systems have been proposed, including those based on the relational data model, based on ontology, and based on file systems, they have all advantages and disadvantages: Those based on the relational data model provide good query processing performance but they do not support complex queries properly; Those based on ontology handle more complex queries but their performances are not satisfactory: Those based on file systems support only keyword queries. Moreover, these systems are lack of support for lifelog group management and do not provide a convenient user interface for modifying and adding tags (metadata) to lifelogs for effective lifelog search. To address these problems, we propose a lifelog management system based on the relational data model. The proposed system models lifelogs by using the relational data model and transforms queries on lifelogs into SQL statements, which results in good query processing performance. It also supports a simplified relationship query that finds a lifelog based on other lifelogs directly related to it, to overcome the disadvantage of not supporting complex queries properly. In addition, the proposed system supports for the management of lifelog groups by providing ways to create, edit, search, play, and share them. Finally, it is equipped with a tagging tool that helps the user to modify and add tags conveniently through the ion of various tags. This paper describes the design and implementation of the proposed system and its various applications.

HW/SW Partitioning Techniques for Multi-Mode Multi-Task Embedded Applications (멀티모드 멀티태스크 임베디드 어플리케이션을 위한 HW/SW 분할 기법)

  • Kim, Young-Jun;Kim, Tae-Whan
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.8
    • /
    • pp.337-347
    • /
    • 2007
  • An embedded system is called a multi-mode embedded system if it performs multiple applications by dynamically reconfiguring the system functionality. Further, the embedded system is called a multi-mode multi-task embedded system if it additionally supports multiple tasks to be executed in a mode. In this Paper, we address a HW/SW partitioning problem, that is, HW/SW partitioning of multi-mode multi-task embedded applications with timing constraints of tasks. The objective of the optimization problem is to find a minimal total system cost of allocation/mapping of processing resources to functional modules in tasks together with a schedule that satisfies the timing constraints. The key success of solving the problem is closely related to the degree of the amount of utilization of the potential parallelism among the executions of modules. However, due to an inherently excessively large search space of the parallelism, and to make the task of schedulabilty analysis easy, the prior HW/SW partitioning methods have not been able to fully exploit the potential parallel execution of modules. To overcome the limitation, we propose a set of comprehensive HW/SW partitioning techniques which solve the three subproblems of the partitioning problem simultaneously: (1) allocation of processing resources, (2) mapping the processing resources to the modules in tasks, and (3) determining an execution schedule of modules. Specifically, based on a precise measurement on the parallel execution and schedulability of modules, we develop a stepwise refinement partitioning technique for single-mode multi-task applications. The proposed techniques is then extended to solve the HW/SW partitioning problem of multi-mode multi-task applications. From experiments with a set of real-life applications, it is shown that the proposed techniques are able to reduce the implementation cost by 19.0% and 17.0% for single- and multi-mode multi-task applications over that by the conventional method, respectively.

A Study on the Critical Success Factors of Social Commerce through the Analysis of the Perception Gap between the Service Providers and the Users: Focused on Ticket Monster in Korea (서비스제공자와 사용자의 인식차이 분석을 통한 소셜커머스 핵심성공요인에 대한 연구: 한국의 티켓몬스터 중심으로)

  • Kim, Il Jung;Lee, Dae Chul;Lim, Gyoo Gun
    • Asia pacific journal of information systems
    • /
    • v.24 no.2
    • /
    • pp.211-232
    • /
    • 2014
  • Recently, there is a growing interest toward social commerce using SNS(Social Networking Service), and the size of its market is also expanding due to popularization of smart phones, tablet PCs and other smart devices. Accordingly, various studies have been attempted but it is shown that most of the previous studies have been conducted from perspectives of the users. The purpose of this study is to derive user-centered CSF(Critical Success Factor) of social commerce from the previous studies and analyze the CSF perception gap between social commerce service providers and users. The CSF perception gap between two groups shows that there is a difference between ideal images the service providers hope for and the actual image the service users have on social commerce companies. This study provides effective improvement directions for social commerce companies by presenting current business problems and its solution plans. For this, This study selected Korea's representative social commerce business Ticket Monster, which is dominant in sales and staff size together with its excellent funding power through M&A by stock exchange with the US social commerce business Living Social with Amazon.com as a shareholder in August, 2011, as a target group of social commerce service provider. we have gathered questionnaires from both service providers and the users from October 22, 2012 until October 31, 2012 to conduct an empirical analysis. We surveyed 160 service providers of Ticket Monster We also surveyed 160 social commerce users who have experienced in using Ticket Monster service. Out of 320 surveys, 20 questionaries which were unfit or undependable were discarded. Consequently the remaining 300(service provider 150, user 150)were used for this empirical study. The statistics were analyzed using SPSS 12.0. Implications of the empirical analysis result of this study are as follows: First of all, There are order differences in the importance of social commerce CSF between two groups. While service providers regard Price Economic as the most important CSF influencing purchasing intention, the users regard 'Trust' as the most important CSF influencing purchasing intention. This means that the service providers have to utilize the unique strong point of social commerce which make the customers be trusted rathe than just focusing on selling product at a discounted price. It means that service Providers need to enhance effective communication skills by using SNS and play a vital role as a trusted adviser who provides curation services and explains the value of products through information filtering. Also, they need to pay attention to preventing consumer damages from deceptive and false advertising. service providers have to create the detailed reward system in case of a consumer damages caused by above problems. It can make strong ties with customers. Second, both service providers and users tend to consider that social commerce CSF influencing purchasing intention are Price Economic, Utility, Trust, and Word of Mouth Effect. Accordingly, it can be learned that users are expecting the benefit from the aspect of prices and economy when using social commerce, and service providers should be able to suggest the individualized discount benefit through diverse methods using social network service. Looking into it from the aspect of usefulness, service providers are required to get users to be cognizant of time-saving, efficiency, and convenience when they are using social commerce. Therefore, it is necessary to increase the usefulness of social commerce through the introduction of a new management strategy, such as intensification of search engine of the Website, facilitation in payment through shopping basket, and package distribution. Trust, as mentioned before, is the most important variable in consumers' mind, so it should definitely be managed for sustainable management. If the trust in social commerce should fall due to consumers' damage case due to false and puffery advertising forgeries, it could have a negative influence on the image of the social commerce industry in general. Instead of advertising with famous celebrities and using a bombastic amount of money on marketing expenses, the social commerce industry should be able to use the word of mouth effect between users by making use of the social network service, the major marketing method of initial social commerce. The word of mouth effect occurring from consumers' spontaneous self-marketer's duty performance can bring not only reduction effect in advertising cost to a service provider but it can also prepare the basis of discounted price suggestion to consumers; in this context, the word of mouth effect should be managed as the CSF of social commerce. Third, Trade safety was not derived as one of the CSF. Recently, with e-commerce like social commerce and Internet shopping increasing in a variety of methods, the importance of trade safety on the Internet also increases, but in this study result, trade safety wasn't evaluated as CSF of social commerce by both groups. This study judges that it's because both service provider groups and user group are perceiving that there is a reliable PG(Payment Gateway) which acts for e-payment of Internet transaction. Accordingly, it is understood that both two groups feel that social commerce can have a corporate identity by website and differentiation in products and services in sales, but don't feel a big difference by business in case of e-payment system. In other words, trade safety should be perceived as natural, basic universal service. Fourth, it's necessary that service providers should intensify the communication with users by making use of social network service which is the major marketing method of social commerce and should be able to use the word of mouth effect between users. The word of mouth effect occurring from consumers' spontaneous self- marketer's duty performance can bring not only reduction effect in advertising cost to a service provider but it can also prepare the basis of discounted price suggestion to consumers. in this context, it is judged that the word of mouth effect should be managed as CSF of social commerce. In this paper, the characteristics of social commerce are limited as five independent variables, however, if an additional study is proceeded with more various independent variables, more in-depth study results will be derived. In addition, this research targets social commerce service providers and the users, however, in the consideration of the fact that social commerce is a two-sided market, drawing CSF through an analysis of perception gap between social commerce service providers and its advertisement clients would be worth to be dealt with in a follow-up study.

A Study on the Performance Evaluation of G2B Procurement Process Innovation by Using MAS: Korea G2B KONEPS Case (멀티에이전트시스템(MAS)을 이용한 G2B 조달 프로세스 혁신의 효과평가에 관한 연구 : 나라장터 G2B사례)

  • Seo, Won-Jun;Lee, Dae-Cheor;Lim, Gyoo-Gun
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.157-175
    • /
    • 2012
  • It is difficult to evaluate the performance of process innovation of e-procurement which has large scale and complex processes. The existing evaluation methods for measuring the effects of process innovation have been mainly done with statistically quantitative methods by analyzing operational data or with qualitative methods by conducting surveys and interviews. However, these methods have some limitations to evaluate the effects because the performance evaluation of e-procurement process innovation should consider the interactions among participants who are active either directly or indirectly through the processes. This study considers the e-procurement process as a complex system and develops a simulation model based on MAS(Multi-Agent System) to evaluate the effects of e-procurement process innovation. Multi-agent based simulation allows observing interaction patterns of objects in virtual world through relationship among objects and their behavioral mechanism. Agent-based simulation is suitable especially for complex business problems. In this study, we used Netlogo Version 4.1.3 as a MAS simulation tool which was developed in Northwestern University. To do this, we developed a interaction model of agents in MAS environment. We defined process agents and task agents, and assigned their behavioral characteristics. The developed simulation model was applied to G2B system (KONEPS: Korea ON-line E-Procurement System) of Public Procurement Service (PPS) in Korea and used to evaluate the innovation effects of the G2B system. KONEPS is a successfully established e-procurement system started in the year 2002. KONEPS is a representative e-Procurement system which integrates characteristics of e-commerce into government for business procurement activities. KONEPS deserves the international recognition considering the annual transaction volume of 56 billion dollars, daily exchanges of electronic documents, users consisted of 121,000 suppliers and 37,000 public organizations, and the 4.5 billion dollars of cost saving. For the simulation, we analyzed the e-procurement of process of KONEPS into eight sub processes such as 'process 1: search products and acquisition of proposal', 'process 2 : review the methods of contracts and item features', 'process 3 : a notice of bid', 'process 4 : registration and confirmation of qualification', 'process 5 : bidding', 'process 6 : a screening test', 'process 7 : contracts', and 'process 8 : invoice and payment'. For the parameter settings of the agents behavior, we collected some data from the transactional database of PPS and some information by conducting a survey. The used data for the simulation are 'participants (government organizations, local government organizations and public institutions)', 'the number of bidding per year', 'the number of total contracts', 'the number of shopping mall transactions', 'the rate of contracts between bidding and shopping mall', 'the successful bidding ratio', and the estimated time for each process. The comparison was done for the difference of time consumption between 'before the innovation (As-was)' and 'after the innovation (As-is).' The results showed that there were productivity improvements in every eight sub processes. The decrease ratio of 'average number of task processing' was 92.7% and the decrease ratio of 'average time of task processing' was 95.4% in entire processes when we use G2B system comparing to the conventional method. Also, this study found that the process innovation effect will be enhanced if the task process related to the 'contract' can be improved. This study shows the usability and possibility of using MAS in process innovation evaluation and its modeling.

An Intelligent Decision Support System for Selecting Promising Technologies for R&D based on Time-series Patent Analysis (R&D 기술 선정을 위한 시계열 특허 분석 기반 지능형 의사결정지원시스템)

  • Lee, Choongseok;Lee, Suk Joo;Choi, Byounggu
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.79-96
    • /
    • 2012
  • As the pace of competition dramatically accelerates and the complexity of change grows, a variety of research have been conducted to improve firms' short-term performance and to enhance firms' long-term survival. In particular, researchers and practitioners have paid their attention to identify promising technologies that lead competitive advantage to a firm. Discovery of promising technology depends on how a firm evaluates the value of technologies, thus many evaluating methods have been proposed. Experts' opinion based approaches have been widely accepted to predict the value of technologies. Whereas this approach provides in-depth analysis and ensures validity of analysis results, it is usually cost-and time-ineffective and is limited to qualitative evaluation. Considerable studies attempt to forecast the value of technology by using patent information to overcome the limitation of experts' opinion based approach. Patent based technology evaluation has served as a valuable assessment approach of the technological forecasting because it contains a full and practical description of technology with uniform structure. Furthermore, it provides information that is not divulged in any other sources. Although patent information based approach has contributed to our understanding of prediction of promising technologies, it has some limitations because prediction has been made based on the past patent information, and the interpretations of patent analyses are not consistent. In order to fill this gap, this study proposes a technology forecasting methodology by integrating patent information approach and artificial intelligence method. The methodology consists of three modules : evaluation of technologies promising, implementation of technologies value prediction model, and recommendation of promising technologies. In the first module, technologies promising is evaluated from three different and complementary dimensions; impact, fusion, and diffusion perspectives. The impact of technologies refers to their influence on future technologies development and improvement, and is also clearly associated with their monetary value. The fusion of technologies denotes the extent to which a technology fuses different technologies, and represents the breadth of search underlying the technology. The fusion of technologies can be calculated based on technology or patent, thus this study measures two types of fusion index; fusion index per technology and fusion index per patent. Finally, the diffusion of technologies denotes their degree of applicability across scientific and technological fields. In the same vein, diffusion index per technology and diffusion index per patent are considered respectively. In the second module, technologies value prediction model is implemented using artificial intelligence method. This studies use the values of five indexes (i.e., impact index, fusion index per technology, fusion index per patent, diffusion index per technology and diffusion index per patent) at different time (e.g., t-n, t-n-1, t-n-2, ${\cdots}$) as input variables. The out variables are values of five indexes at time t, which is used for learning. The learning method adopted in this study is backpropagation algorithm. In the third module, this study recommends final promising technologies based on analytic hierarchy process. AHP provides relative importance of each index, leading to final promising index for technology. Applicability of the proposed methodology is tested by using U.S. patents in international patent class G06F (i.e., electronic digital data processing) from 2000 to 2008. The results show that mean absolute error value for prediction produced by the proposed methodology is lower than the value produced by multiple regression analysis in cases of fusion indexes. However, mean absolute error value of the proposed methodology is slightly higher than the value of multiple regression analysis. These unexpected results may be explained, in part, by small number of patents. Since this study only uses patent data in class G06F, number of sample patent data is relatively small, leading to incomplete learning to satisfy complex artificial intelligence structure. In addition, fusion index per technology and impact index are found to be important criteria to predict promising technology. This study attempts to extend the existing knowledge by proposing a new methodology for prediction technology value by integrating patent information analysis and artificial intelligence network. It helps managers who want to technology develop planning and policy maker who want to implement technology policy by providing quantitative prediction methodology. In addition, this study could help other researchers by proving a deeper understanding of the complex technological forecasting field.

A Study on the Improvement of Recommendation Accuracy by Using Category Association Rule Mining (카테고리 연관 규칙 마이닝을 활용한 추천 정확도 향상 기법)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.27-42
    • /
    • 2020
  • Traditional companies with offline stores were unable to secure large display space due to the problems of cost. This limitation inevitably allowed limited kinds of products to be displayed on the shelves, which resulted in consumers being deprived of the opportunity to experience various items. Taking advantage of the virtual space called the Internet, online shopping goes beyond the limits of limitations in physical space of offline shopping and is now able to display numerous products on web pages that can satisfy consumers with a variety of needs. Paradoxically, however, this can also cause consumers to experience the difficulty of comparing and evaluating too many alternatives in their purchase decision-making process. As an effort to address this side effect, various kinds of consumer's purchase decision support systems have been studied, such as keyword-based item search service and recommender systems. These systems can reduce search time for items, prevent consumer from leaving while browsing, and contribute to the seller's increased sales. Among those systems, recommender systems based on association rule mining techniques can effectively detect interrelated products from transaction data such as orders. The association between products obtained by statistical analysis provides clues to predicting how interested consumers will be in another product. However, since its algorithm is based on the number of transactions, products not sold enough so far in the early days of launch may not be included in the list of recommendations even though they are highly likely to be sold. Such missing items may not have sufficient opportunities to be exposed to consumers to record sufficient sales, and then fall into a vicious cycle of a vicious cycle of declining sales and omission in the recommendation list. This situation is an inevitable outcome in situations in which recommendations are made based on past transaction histories, rather than on determining potential future sales possibilities. This study started with the idea that reflecting the means by which this potential possibility can be identified indirectly would help to select highly recommended products. In the light of the fact that the attributes of a product affect the consumer's purchasing decisions, this study was conducted to reflect them in the recommender systems. In other words, consumers who visit a product page have shown interest in the attributes of the product and would be also interested in other products with the same attributes. On such assumption, based on these attributes, the recommender system can select recommended products that can show a higher acceptance rate. Given that a category is one of the main attributes of a product, it can be a good indicator of not only direct associations between two items but also potential associations that have yet to be revealed. Based on this idea, the study devised a recommender system that reflects not only associations between products but also categories. Through regression analysis, two kinds of associations were combined to form a model that could predict the hit rate of recommendation. To evaluate the performance of the proposed model, another regression model was also developed based only on associations between products. Comparative experiments were designed to be similar to the environment in which products are actually recommended in online shopping malls. First, the association rules for all possible combinations of antecedent and consequent items were generated from the order data. Then, hit rates for each of the associated rules were predicted from the support and confidence that are calculated by each of the models. The comparative experiments using order data collected from an online shopping mall show that the recommendation accuracy can be improved by further reflecting not only the association between products but also categories in the recommendation of related products. The proposed model showed a 2 to 3 percent improvement in hit rates compared to the existing model. From a practical point of view, it is expected to have a positive effect on improving consumers' purchasing satisfaction and increasing sellers' sales.

Self-optimizing feature selection algorithm for enhancing campaign effectiveness (캠페인 효과 제고를 위한 자기 최적화 변수 선택 알고리즘)

  • Seo, Jeoung-soo;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.173-198
    • /
    • 2020
  • For a long time, many studies have been conducted on predicting the success of campaigns for customers in academia, and prediction models applying various techniques are still being studied. Recently, as campaign channels have been expanded in various ways due to the rapid revitalization of online, various types of campaigns are being carried out by companies at a level that cannot be compared to the past. However, customers tend to perceive it as spam as the fatigue of campaigns due to duplicate exposure increases. Also, from a corporate standpoint, there is a problem that the effectiveness of the campaign itself is decreasing, such as increasing the cost of investing in the campaign, which leads to the low actual campaign success rate. Accordingly, various studies are ongoing to improve the effectiveness of the campaign in practice. This campaign system has the ultimate purpose to increase the success rate of various campaigns by collecting and analyzing various data related to customers and using them for campaigns. In particular, recent attempts to make various predictions related to the response of campaigns using machine learning have been made. It is very important to select appropriate features due to the various features of campaign data. If all of the input data are used in the process of classifying a large amount of data, it takes a lot of learning time as the classification class expands, so the minimum input data set must be extracted and used from the entire data. In addition, when a trained model is generated by using too many features, prediction accuracy may be degraded due to overfitting or correlation between features. Therefore, in order to improve accuracy, a feature selection technique that removes features close to noise should be applied, and feature selection is a necessary process in order to analyze a high-dimensional data set. Among the greedy algorithms, SFS (Sequential Forward Selection), SBS (Sequential Backward Selection), SFFS (Sequential Floating Forward Selection), etc. are widely used as traditional feature selection techniques. It is also true that if there are many risks and many features, there is a limitation in that the performance for classification prediction is poor and it takes a lot of learning time. Therefore, in this study, we propose an improved feature selection algorithm to enhance the effectiveness of the existing campaign. The purpose of this study is to improve the existing SFFS sequential method in the process of searching for feature subsets that are the basis for improving machine learning model performance using statistical characteristics of the data to be processed in the campaign system. Through this, features that have a lot of influence on performance are first derived, features that have a negative effect are removed, and then the sequential method is applied to increase the efficiency for search performance and to apply an improved algorithm to enable generalized prediction. Through this, it was confirmed that the proposed model showed better search and prediction performance than the traditional greed algorithm. Compared with the original data set, greed algorithm, genetic algorithm (GA), and recursive feature elimination (RFE), the campaign success prediction was higher. In addition, when performing campaign success prediction, the improved feature selection algorithm was found to be helpful in analyzing and interpreting the prediction results by providing the importance of the derived features. This is important features such as age, customer rating, and sales, which were previously known statistically. Unlike the previous campaign planners, features such as the combined product name, average 3-month data consumption rate, and the last 3-month wireless data usage were unexpectedly selected as important features for the campaign response, which they rarely used to select campaign targets. It was confirmed that base attributes can also be very important features depending on the type of campaign. Through this, it is possible to analyze and understand the important characteristics of each campaign type.

Application of Support Vector Regression for Improving the Performance of the Emotion Prediction Model (감정예측모형의 성과개선을 위한 Support Vector Regression 응용)

  • Kim, Seongjin;Ryoo, Eunchung;Jung, Min Kyu;Kim, Jae Kyeong;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.185-202
    • /
    • 2012
  • .Since the value of information has been realized in the information society, the usage and collection of information has become important. A facial expression that contains thousands of information as an artistic painting can be described in thousands of words. Followed by the idea, there has recently been a number of attempts to provide customers and companies with an intelligent service, which enables the perception of human emotions through one's facial expressions. For example, MIT Media Lab, the leading organization in this research area, has developed the human emotion prediction model, and has applied their studies to the commercial business. In the academic area, a number of the conventional methods such as Multiple Regression Analysis (MRA) or Artificial Neural Networks (ANN) have been applied to predict human emotion in prior studies. However, MRA is generally criticized because of its low prediction accuracy. This is inevitable since MRA can only explain the linear relationship between the dependent variables and the independent variable. To mitigate the limitations of MRA, some studies like Jung and Kim (2012) have used ANN as the alternative, and they reported that ANN generated more accurate prediction than the statistical methods like MRA. However, it has also been criticized due to over fitting and the difficulty of the network design (e.g. setting the number of the layers and the number of the nodes in the hidden layers). Under this background, we propose a novel model using Support Vector Regression (SVR) in order to increase the prediction accuracy. SVR is an extensive version of Support Vector Machine (SVM) designated to solve the regression problems. The model produced by SVR only depends on a subset of the training data, because the cost function for building the model ignores any training data that is close (within a threshold ${\varepsilon}$) to the model prediction. Using SVR, we tried to build a model that can measure the level of arousal and valence from the facial features. To validate the usefulness of the proposed model, we collected the data of facial reactions when providing appropriate visual stimulating contents, and extracted the features from the data. Next, the steps of the preprocessing were taken to choose statistically significant variables. In total, 297 cases were used for the experiment. As the comparative models, we also applied MRA and ANN to the same data set. For SVR, we adopted '${\varepsilon}$-insensitive loss function', and 'grid search' technique to find the optimal values of the parameters like C, d, ${\sigma}^2$, and ${\varepsilon}$. In the case of ANN, we adopted a standard three-layer backpropagation network, which has a single hidden layer. The learning rate and momentum rate of ANN were set to 10%, and we used sigmoid function as the transfer function of hidden and output nodes. We performed the experiments repeatedly by varying the number of nodes in the hidden layer to n/2, n, 3n/2, and 2n, where n is the number of the input variables. The stopping condition for ANN was set to 50,000 learning events. And, we used MAE (Mean Absolute Error) as the measure for performance comparison. From the experiment, we found that SVR achieved the highest prediction accuracy for the hold-out data set compared to MRA and ANN. Regardless of the target variables (the level of arousal, or the level of positive / negative valence), SVR showed the best performance for the hold-out data set. ANN also outperformed MRA, however, it showed the considerably lower prediction accuracy than SVR for both target variables. The findings of our research are expected to be useful to the researchers or practitioners who are willing to build the models for recognizing human emotions.