• Title/Summary/Keyword: Information input algorithm

Search Result 2,444, Processing Time 0.04 seconds

Analysis of MMPP/M/1 Queue with several homogeneous two-state MMPP sources (여러개의 two-state MMPP 입력을 갖는 대기체계에 대한 계산방법)

  • 이계민;안수한;전종우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9A
    • /
    • pp.1354-1358
    • /
    • 1999
  • In this paper, we suggest a simple computational algorithm to obtain the queue length distribution in the finite queue, where the input process consists of several homogeneous two-state Markov modulated Poisson processes. With comparison to the conventional algorithm, is more practical, in particular, when a large number of input sources are loaded to the system.

  • PDF

A New Convergence Behavior of the Least Mean Fourth Adaptive Algorithm for a Multiple Sinusoidal Input

  • Lee, Kang-Seung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12A
    • /
    • pp.2043-2049
    • /
    • 2001
  • In this paper we study the convergence behavior of the least mean fourth(LMF) algorithm where the error raised to the power of four is minimized for a multiple sinusoidal input and Gaussian measurement noise. Here we newly obtain the convergence equation for the sum of the mean of the squared weight errors, which indicates that the transient behavior can differ depending on the relative sizes of the Gaussian noise and the convergence constant. It should be noted that no similar results can be expected from the previous analysis by Walach add Widrow.

  • PDF

A transformed input-domain approach to fuzzy modeling-KL transform approch (입력 공간의 변환을 이용한 새로운 방식의 퍼지 모델링-KL 변환 방식)

  • 김은태;박민기;이수영;박민용
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.4
    • /
    • pp.58-66
    • /
    • 1998
  • In many situations, it is very important to identify a certain unkown system, it from its input-output data. For this purpose, several system modeling algorithms have been suggested heretofore, and studies regarding the fuzzy modeling based on its nonlinearity get underway as well. Generatlly, fuzzy models have the capability of dividing input space into several subspaces, compared to linear ones. But hitherto subggested fuzzy modeling algorithms do not take into consideration the correlations between components of sample input data and address them independently of each other, which results in ineffective partition of input space. Therefore, to solve this problem, this letter proposes a new fuzzy modeling algorithm which partitions the input space more efficiently that conventional methods by taking into consideration correlations between components of sample data. As a way to use correlation and divide the input space, the method of principal component is ued. Finally, the results of computer simulation are given to demonstrate the validity of this algorithm.

  • PDF

A Modified Deterministic Boltzmann Machine Learning Algorithm for Networks with Quantized Connection (양자화 결합 네트워크를 위한 수정된 결정론적 볼츠만머신 학습 알고리즘)

  • 박철영
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.3
    • /
    • pp.62-67
    • /
    • 2002
  • From the view point of VLSI implementation, a new teaming algorithm suited for network with quantized connection weights is desired. This paper presents a new teaming algorithm for the DBM(deterministic Boltzmann machine) network with quantized connection weight. The performance of proposed algorithm is tested with the 2-input XOR problem and the 3-input parity problem through computer simulations. The simulation results show that our algorithm is efficient for quantized connection neural networks.

  • PDF

Parallel Algorithm For Level Clustering (집단화를 위한 병렬 알고리즘의 구현)

  • Bae, Yong-Geun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.2
    • /
    • pp.148-155
    • /
    • 1995
  • When we analize many amount of patterns, it is necessary for these patterns are to be clustering into several groups according to a certain evaluation function. This process, in case that there are lots of input patterns, needs a considerable amount of computations and is reqired parallel algorithm for these. To solve this problem, this paper propose parallel clustering algorithm which parallelized k-means algorithm and implemented it under the MIMD parallel computer based message passing. The result is through the experiment and performance analysis, that this parallel algorithm is appropriate in case these are many input patterns.

  • PDF

A Packet Detection Algorithm for IEEE802.11n System (IEEE802.11n 시스템에 적용 가능한 패킷 검출 알고리즘)

  • Jung, Hyeok-Koo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4C
    • /
    • pp.330-335
    • /
    • 2008
  • This paper proposes a packet detection algorithm for IEEE802.11n system. IEEE802.11n is a multiple input multiple output (MIMO) system and we have to consider several combining techniques which are used in multiple receive antenna system. In this paper, we propose a hybrid packet detection algorithm which combines double sliding window algorithm or delay and correlation algorithm, that is used in single input single output (SISO) system, and multiple receive antenna combining algorithms, and simulated their performances in Iin system environments and shows the results.

The Improved Watershed Algorithm using Adaptive Local Threshold (적응적 지역 임계치를 이용한 개선된 워터쉐드 알고리즘)

  • Lee Seok-Hee;Kwon Dong-Jin;Kwak Nae-Joung;Ahn Jae-Hyeong
    • Annual Conference of KIPS
    • /
    • 2004.11a
    • /
    • pp.891-894
    • /
    • 2004
  • This paper proposes an improved image segmentation algorithm by the watershed algorithm based on the local adaptive threshold on local minima search and the fixing threshold on label allocation. The previous watershed algorithm generates the problem of over-segmentation. The over-segmentation makes the boundary in the inaccuracy region by occurring around the object. In order to solve those problems we quantize the input color image by the vector quantization, remove noise and find the gradient image. We sorted local minima applying the local adaptive threshold on local minima search of the input color image. The simulation results show that the proposed algorithm controls over-segmentation and makes the fine boundary around segmented region applying the fixing threshold based on sorted local minima on label allocation.

  • PDF

A Network Partition Approach for MFD-Based Urban Transportation Network Model

  • Xu, Haitao;Zhang, Weiguo;zhuo, Zuozhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4483-4501
    • /
    • 2020
  • Recent findings identified the scatter and shape of MFD (macroscopic fundamental diagram) is heavily influenced by the spatial distribution of link density in a road network. This implies that the concept of MFD can be utilized to divide a heterogeneous road network with different degrees of congestion into multiple homogeneous subnetworks. Considering the actual traffic data is usually incomplete and inaccurate while most traffic partition algorithms rely on the completeness of the data, we proposed a three-step partitioned algorithm called Iso-MB (Isoperimetric algorithm - Merging - Boundary adjustment) permitting of incompletely input data in this paper. The proposed algorithm was implemented and verified in a simulated urban transportation network. The existence of well-defined MFD in each subnetwork was revealed and discussed and the selection of stop parameter in the isoperimetric algorithm was explained and dissected. The effectiveness of the approach to the missing input data was also demonstrated and elaborated.

Illumination correction via improved grey wolf optimizer for regularized random vector functional link network

  • Xiaochun Zhang;Zhiyu Zhou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.816-839
    • /
    • 2023
  • In a random vector functional link (RVFL) network, shortcomings such as local optimal stagnation and decreased convergence performance cause a reduction in the accuracy of illumination correction by only inputting the weights and biases of hidden neurons. In this study, we proposed an improved regularized random vector functional link (RRVFL) network algorithm with an optimized grey wolf optimizer (GWO). Herein, we first proposed the moth-flame optimization (MFO) algorithm to provide a set of excellent initial populations to improve the convergence rate of GWO. Thereafter, the MFO-GWO algorithm simultaneously optimized the input feature, input weight, hidden node and bias of RRVFL, thereby avoiding local optimal stagnation. Finally, the MFO-GWO-RRVFL algorithm was applied to ameliorate the performance of illumination correction of various test images. The experimental results revealed that the MFO-GWO-RRVFL algorithm was stable, compatible, and exhibited a fast convergence rate.

Face Detection Algorithm for Video Conference Camera Control (화상회의 카메라 제어를 위한 안면 검출 알고리듬)

  • 온승엽;박재현;박규식;이준희
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.218-221
    • /
    • 2000
  • In this paper, we propose a new algorithm to detect human faces for controling a camera used in video conference. We model the distribution of skin color and set up the standard skin color in YIQ color space. An input video frame image is segmented into skin and non-skin segments by comparing the standard skin color and each pixels in the input video frame. Then, shape filler is applied to select face segments from skin segments. Our algorithm detects human faces in real time to control a camera to capture a human face with a proper size and position.

  • PDF