• Title/Summary/Keyword: Information input algorithm

Search Result 2,444, Processing Time 0.036 seconds

A Neural Network-Based Tracking Method for the Estimation of Hazardous Gas Release Rate Using Sensor Network Data (센서네트워크 데이터를 이용하여 독성물질 누출속도를 예측하기 위한 신경망 기반의 역추적방법 연구)

  • So, Won;Shin, Dong-Il;Lee, Chang-Jun;Han, Chong-Hun;Yoon, En-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.38-41
    • /
    • 2008
  • In this research, we propose a new method for tracking the release rate using the concentration data obtained from the sensor. We used a sensor network that has already been set surrounding the area where hazardous gas releases can occur. From the real-time sensor data, we detected and analyzed releases of harmful materials and their concentrations. Based on the results, the release rate is estimated using the neural network. This model consists of 14 input variables (sensor data, material properties, process information, meteorological conditions) and one output (release rate). The dispersion model then performs the simulation of the expected dispersion consequence by combining the sensor data, GIS data and the diagnostic result of the source term. The result of this study will improve the safety-concerns of residents living next to storage facilities containing hazardous materials by providing the enhanced emergency response plan and monitoring system for toxic gas releases.

  • PDF

The Motion Estimator Implementation with Efficient Structure for Full Search Algorithm of Variable Block Size (다양한 블록 크기의 전역 탐색 알고리즘을 위한 효율적인 구조를 갖는 움직임 추정기 설계)

  • Hwang, Jong-Hee;Choe, Yoon-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.11
    • /
    • pp.66-76
    • /
    • 2009
  • The motion estimation in video encoding system occupies the biggest part. So, we require the motion estimator with efficient structure for real-time operation. And for motion estimator's implementation, it is desired to design hardware module of an exclusive use that perform the encoding process at high speed. This paper proposes motion estimation detection block(MED), 41 SADs(Sum of Absolute Difference) calculation block, minimum SAD calculation and motion vector generation block based on parallel processing. The parallel processing can reduce effectively the amount of the operation. The minimum SAD calculation and MED block uses the pre-computation technique for reducing switching activity of the input signal. It results in high-speed operation. The MED and 41 SADs calculation blocks are composed of adder tree which causes the problem of critical path. So, the structure of adder tree has changed the most commonly used ripple carry adder(RCA) with carry skip adder(CSA). It enables adder tree to operate at high speed. In addition, as we enabled to easily control key variables such as control signal of search range from the outside, the efficiency of hardware structure increased. Simulation and FPGA verification results show that the delay of MED block generating the critical path at the motion estimator is reduced about 19.89% than the conventional strukcture.

A Study on Lightweight CNN-based Interpolation Method for Satellite Images (위성 영상을 위한 경량화된 CNN 기반의 보간 기술 연구)

  • Kim, Hyun-ho;Seo, Doochun;Jung, JaeHeon;Kim, Yongwoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.2
    • /
    • pp.167-177
    • /
    • 2022
  • In order to obtain satellite image products using the image transmitted to the ground station after capturing the satellite images, many image pre/post-processing steps are involved. During the pre/post-processing, when converting from level 1R images to level 1G images, geometric correction is essential. An interpolation method necessary for geometric correction is inevitably used, and the quality of the level 1G images is determined according to the accuracy of the interpolation method. Also, it is crucial to speed up the interpolation algorithm by the level processor. In this paper, we proposed a lightweight CNN-based interpolation method required for geometric correction when converting from level 1R to level 1G. The proposed method doubles the resolution of satellite images and constructs a deep learning network with a lightweight deep convolutional neural network for fast processing speed. In addition, a feature map fusion method capable of improving the image quality of multispectral (MS) bands using panchromatic (PAN) band information was proposed. The images obtained through the proposed interpolation method improved by about 0.4 dB for the PAN image and about 4.9 dB for the MS image in the quantitative peak signal-to-noise ratio (PSNR) index compared to the existing deep learning-based interpolation methods. In addition, it was confirmed that the time required to acquire an image that is twice the resolution of the 36,500×36,500 input image based on the PAN image size is improved by about 1.6 times compared to the existing deep learning-based interpolation method.

Development of a window-shifting ANN training method for a quantitative rock classification in unsampled rock zone (미시추 구간의 정량적 지반 등급 분류를 위한 윈도우-쉬프팅 인공 신경망 학습 기법의 개발)

  • Shin, Hyu-Soung;Kwon, Young-Cheul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.2
    • /
    • pp.151-162
    • /
    • 2009
  • This study proposes a new methodology for quantitative rock classification in unsampled rock zone, which occupies the most of tunnel design area. This methodology is to train an ANN (artificial neural network) by using results from a drilling investigation combined with electric resistivity survey in sampled zone, and then apply the trained ANN to making a prediction of grade of rock classification in unsampled zone. The prediction is made at the center point of a shifting window by using a number of electric resistivity values within the window as input reference information. The ANN training in this study was carried out by the RPROP (Resilient backpropagation) training algorithm and Early-Stopping method for achieving a generalized training. The proposed methodology is then applied to generate a rock grade distribution on a real tunnel site where drilling investigation and resistivity survey were undertaken. The result from the ANN based prediction is compared with one from a conventional kriging method. In the comparison, the proposed ANN method shows a better agreement with the electric resistivity distribution obtained by field survey. And it is also seen that the proposed method produces a more realistic and more understandable rock grade distribution.

A Study on the Design of Case-based Reasoning Office Knowledge Recommender System for Office Professionals (사례기반추론을 이용한 사무지식 추천시스템)

  • Kim, Myong-Ok;Na, Jung-Ah
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.131-146
    • /
    • 2011
  • It is becoming more essential than ever for office professionals to become competent in information collection/gathering and problem solving in today's global business society. In particular, office professionals do not only assist simple chores but are also forced to make decisions as quickly and efficiently as possible in problematic situations that can end in either profit or loss to their company. Since office professionals rely heavily on their tacit knowledge to solve problems that arise in everyday business situations, it is truly helpful and efficient to refer to similar business cases from the past and share or reuse such previous business knowledge for better performance results. Case-based reasoning(CBR) is a problem-solving method which utilizes previous similar cases to solve problems. Through CBR, the closest case to the current business situation can be searched and retrieved from the case or knowledge base and can be referred to for a new solution. This reduces the time and resources needed and increase success probability. The main purpose of this study is to design a system called COKRS(Case-based reasoning Office Knowledge Recommender System) and develop a prototype for it. COKRS manages cases and their meta data, accepts key words from the user and searches the casebase for the most similar past case to the input keyword, and communicates with users to collect information about the quality of the case provided and continuously apply the information to update values on the similarity table. Core concepts like system architecture, definition of a case, meta database, similarity table have been introduced, and also an algorithm to retrieve all similar cases from past work history has also been proposed. In this research, a case is best defined as a work experience in office administration. However, defining a case in office administration was not an easy task in reality. We surveyed 10 office professionals in order to get an idea of how to define a case in office administration and found out that in most cases any type of office work is to be recorded digitally and/or non-digitally. Therefore, we have defined a record or document case as for COKRS. Similarity table was composed of items of the result of job analysis for office professionals conducted in a previous research. Values between items of the similarity table were initially set to those from researchers' experiences and literature review. The results of this study could also be utilized in other areas of business for knowledge sharing wherever it is necessary and beneficial to share and learn from past experiences. We expect this research to be a reference for researchers and developers who are in this area or interested in office knowledge recommendation system based on CBR. Focus group interview(FGI) was conducted with ten administrative assistants carefully selected from various areas of business. They were given a chance to try out COKRS in an actual work setting and make some suggestions for future improvement. FGI has identified the user-interface for saving and searching cases for keywords as the most positive aspect of COKRS, and has identified the most urgently needed improvement as transforming tacit knowledge and knowhow into recorded documents more efficiently. Also, the focus group has mentioned that it is essential to secure enough support, encouragement, and reward from the company and promote positive attitude and atmosphere for knowledge sharing for everybody's benefit in the company.

Korean Word Sense Disambiguation using Dictionary and Corpus (사전과 말뭉치를 이용한 한국어 단어 중의성 해소)

  • Jeong, Hanjo;Park, Byeonghwa
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • As opinion mining in big data applications has been highlighted, a lot of research on unstructured data has made. Lots of social media on the Internet generate unstructured or semi-structured data every second and they are often made by natural or human languages we use in daily life. Many words in human languages have multiple meanings or senses. In this result, it is very difficult for computers to extract useful information from these datasets. Traditional web search engines are usually based on keyword search, resulting in incorrect search results which are far from users' intentions. Even though a lot of progress in enhancing the performance of search engines has made over the last years in order to provide users with appropriate results, there is still so much to improve it. Word sense disambiguation can play a very important role in dealing with natural language processing and is considered as one of the most difficult problems in this area. Major approaches to word sense disambiguation can be classified as knowledge-base, supervised corpus-based, and unsupervised corpus-based approaches. This paper presents a method which automatically generates a corpus for word sense disambiguation by taking advantage of examples in existing dictionaries and avoids expensive sense tagging processes. It experiments the effectiveness of the method based on Naïve Bayes Model, which is one of supervised learning algorithms, by using Korean standard unabridged dictionary and Sejong Corpus. Korean standard unabridged dictionary has approximately 57,000 sentences. Sejong Corpus has about 790,000 sentences tagged with part-of-speech and senses all together. For the experiment of this study, Korean standard unabridged dictionary and Sejong Corpus were experimented as a combination and separate entities using cross validation. Only nouns, target subjects in word sense disambiguation, were selected. 93,522 word senses among 265,655 nouns and 56,914 sentences from related proverbs and examples were additionally combined in the corpus. Sejong Corpus was easily merged with Korean standard unabridged dictionary because Sejong Corpus was tagged based on sense indices defined by Korean standard unabridged dictionary. Sense vectors were formed after the merged corpus was created. Terms used in creating sense vectors were added in the named entity dictionary of Korean morphological analyzer. By using the extended named entity dictionary, term vectors were extracted from the input sentences and then term vectors for the sentences were created. Given the extracted term vector and the sense vector model made during the pre-processing stage, the sense-tagged terms were determined by the vector space model based word sense disambiguation. In addition, this study shows the effectiveness of merged corpus from examples in Korean standard unabridged dictionary and Sejong Corpus. The experiment shows the better results in precision and recall are found with the merged corpus. This study suggests it can practically enhance the performance of internet search engines and help us to understand more accurate meaning of a sentence in natural language processing pertinent to search engines, opinion mining, and text mining. Naïve Bayes classifier used in this study represents a supervised learning algorithm and uses Bayes theorem. Naïve Bayes classifier has an assumption that all senses are independent. Even though the assumption of Naïve Bayes classifier is not realistic and ignores the correlation between attributes, Naïve Bayes classifier is widely used because of its simplicity and in practice it is known to be very effective in many applications such as text classification and medical diagnosis. However, further research need to be carried out to consider all possible combinations and/or partial combinations of all senses in a sentence. Also, the effectiveness of word sense disambiguation may be improved if rhetorical structures or morphological dependencies between words are analyzed through syntactic analysis.

Predicting stock movements based on financial news with systematic group identification (시스템적인 군집 확인과 뉴스를 이용한 주가 예측)

  • Seong, NohYoon;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.1-17
    • /
    • 2019
  • Because stock price forecasting is an important issue both academically and practically, research in stock price prediction has been actively conducted. The stock price forecasting research is classified into using structured data and using unstructured data. With structured data such as historical stock price and financial statements, past studies usually used technical analysis approach and fundamental analysis. In the big data era, the amount of information has rapidly increased, and the artificial intelligence methodology that can find meaning by quantifying string information, which is an unstructured data that takes up a large amount of information, has developed rapidly. With these developments, many attempts with unstructured data are being made to predict stock prices through online news by applying text mining to stock price forecasts. The stock price prediction methodology adopted in many papers is to forecast stock prices with the news of the target companies to be forecasted. However, according to previous research, not only news of a target company affects its stock price, but news of companies that are related to the company can also affect the stock price. However, finding a highly relevant company is not easy because of the market-wide impact and random signs. Thus, existing studies have found highly relevant companies based primarily on pre-determined international industry classification standards. However, according to recent research, global industry classification standard has different homogeneity within the sectors, and it leads to a limitation that forecasting stock prices by taking them all together without considering only relevant companies can adversely affect predictive performance. To overcome the limitation, we first used random matrix theory with text mining for stock prediction. Wherever the dimension of data is large, the classical limit theorems are no longer suitable, because the statistical efficiency will be reduced. Therefore, a simple correlation analysis in the financial market does not mean the true correlation. To solve the issue, we adopt random matrix theory, which is mainly used in econophysics, to remove market-wide effects and random signals and find a true correlation between companies. With the true correlation, we perform cluster analysis to find relevant companies. Also, based on the clustering analysis, we used multiple kernel learning algorithm, which is an ensemble of support vector machine to incorporate the effects of the target firm and its relevant firms simultaneously. Each kernel was assigned to predict stock prices with features of financial news of the target firm and its relevant firms. The results of this study are as follows. The results of this paper are as follows. (1) Following the existing research flow, we confirmed that it is an effective way to forecast stock prices using news from relevant companies. (2) When looking for a relevant company, looking for it in the wrong way can lower AI prediction performance. (3) The proposed approach with random matrix theory shows better performance than previous studies if cluster analysis is performed based on the true correlation by removing market-wide effects and random signals. The contribution of this study is as follows. First, this study shows that random matrix theory, which is used mainly in economic physics, can be combined with artificial intelligence to produce good methodologies. This suggests that it is important not only to develop AI algorithms but also to adopt physics theory. This extends the existing research that presented the methodology by integrating artificial intelligence with complex system theory through transfer entropy. Second, this study stressed that finding the right companies in the stock market is an important issue. This suggests that it is not only important to study artificial intelligence algorithms, but how to theoretically adjust the input values. Third, we confirmed that firms classified as Global Industrial Classification Standard (GICS) might have low relevance and suggested it is necessary to theoretically define the relevance rather than simply finding it in the GICS.

Analysis of Applicability of RPC Correction Using Deep Learning-Based Edge Information Algorithm (딥러닝 기반 윤곽정보 추출자를 활용한 RPC 보정 기술 적용성 분석)

  • Jaewon Hur;Changhui Lee;Doochun Seo;Jaehong Oh;Changno Lee;Youkyung Han
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.387-396
    • /
    • 2024
  • Most very high-resolution (VHR) satellite images provide rational polynomial coefficients (RPC) data to facilitate the transformation between ground coordinates and image coordinates. However, initial RPC often contains geometric errors, necessitating correction through matching with ground control points (GCPs). A GCP chip is a small image patch extracted from an orthorectified image together with height information of the center point, which can be directly used for geometric correction. Many studies have focused on area-based matching methods to accurately align GCP chips with VHR satellite images. In cases with seasonal differences or changed areas, edge-based algorithms are often used for matching due to the difficulty of relying solely on pixel values. However, traditional edge extraction algorithms,such as canny edge detectors, require appropriate threshold settings tailored to the spectral characteristics of satellite images. Therefore, this study utilizes deep learning-based edge information that is insensitive to the regional characteristics of satellite images for matching. Specifically,we use a pretrained pixel difference network (PiDiNet) to generate the edge maps for both satellite images and GCP chips. These edge maps are then used as input for normalized cross-correlation (NCC) and relative edge cross-correlation (RECC) to identify the peak points with the highest correlation between the two edge maps. To remove mismatched pairs and thus obtain the bias-compensated RPC, we iteratively apply the data snooping. Finally, we compare the results qualitatively and quantitatively with those obtained from traditional NCC and RECC methods. The PiDiNet network approach achieved high matching accuracy with root mean square error (RMSE) values ranging from 0.3 to 0.9 pixels. However, the PiDiNet-generated edges were thicker compared to those from the canny method, leading to slightly lower registration accuracy in some images. Nevertheless, PiDiNet consistently produced characteristic edge information, allowing for successful matching even in challenging regions. This study demonstrates that improving the robustness of edge-based registration methods can facilitate effective registration across diverse regions.

Sensory Information Processing

  • Yoshimoto, Chiyoshi
    • Journal of Biomedical Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.1-8
    • /
    • 1985
  • The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70$\pm$1.32mmHg/min)compared to CF dialyzers(4.32$\pm$0.55mmHg/min)(p<0.05). However, there was no observable difference in the UFR between the two dialyzers. Neither APD nor UFR showed any significant increase with an increasing number of reuses for up to more than 20reuses. A substantial number of failures observed in APD(larger than 20mmHe/min)on the reused dialyzers(2 out of 40 CP and S out 26 C-DAK) were attributed to the Possible damage on the fibers. The CF 15-11 HFDs which failed APD test did not show changes in the UFR compared to normal dialyzers indicating that APD is a more sensitive test than UFR test to evaluate the integrity of the fibers. 30527 T00401030527 ^x For quantitative measurement of reflected light from a clinical diagnostic strip, a prototype old reflectance photometer was designed. The strip loader and cassette were made to obtain more accurate reflectance parameters. The strip was illuminated at 45˚c through optical fiber and the intensity of reflected light was determined at rectanguLat angle using a photodiode. The kubelka-munk coefficient and reflection optical density were determined ar four different wavelengths(500, 550, 570 and 610nm) for blood glucose strip. For higher concentration than 300mg/41 about glucose, a saturation state of abforbance was observed at 500, 550 and 570nm. The correlation between glucose concentration and parameters was the best at 610nm. 30535 T00401030535 ^x Radiation-induced fibrosarcoma tumors were grown on the flanks of C3H mice. The mice were divided into two groups. One group was injected with Photofrin II, intravenously (2.5mg/kg body weight). The other group received no Photofrin II. Mice from both groups were irradialed for approximately 15 minutes at 100, 300, or 500 mW/cm2 with the argon (488nm/514.5 nm), dye(628nm) and gold vapor (pulsed 628 nm) laser light. A photosensitizer behaved as an added absorber. Under our experimental conditions, the presence of Photolfrin II increased surface temperature by at least 40% and the temperature rise due to 300 mW/cm2 irradiation exceeded values for hyperthermia. Light and temperature distributions with depth were estimated by a computer model. The model demonstrated the influence of wavelength on the thermal process and proved to be a valuable tool to investigate internal temperature rise. 30536 T00401030536 ^x We investigated the structural geometry of thirty-eight Korean femurs. The purpose of this study is to identify major geometrical differences between Korean femurs 3nd others that we believe belong to Caucasians so that we would be able to get insights into the femoral component design that fits Asians including Koreans. We utilized computerized tomography (CT) images of femurs extracted from cadavers. The CT images were transformed into bitmap data by using a film scanner, and then analyzed by using a commercially available software called Image v.1.0 and a Macintosh IIci computer.The resulting data were compared with already published data. The major results show that the geometry of the Korean femurs is significantly different from that of Caucasians: (1) the anteversion angle and the canal flare index are greater by the amount of approximately 8˚ and 0.5, respectively, (2) the shape of the isthmus cross section is more round, and (3) the distance between the teaser trochanter and the proximal border of the isthmus is shelter by about 15 mm. The results suggested that the femoral component suitable for Asians should be different from the currently-used components designed and manufactured mostly by European or American companies. 30537 T00401030537 ^x It is well known that nonlinear propagation characteristics of the wave in the tissue may give very useful information for the medical diagnoisis. In this paper, a new method to detect nonlinear propagation characteristics of the internal vibration in the tissue for the low frequency mechanical vibration by using bispectral analysis is proposed. In the method, low frequency vibration of f0( = 100Hz) is applied on the surface of the object, and the waveform of the internal vibration x (t) is measured from Doppler frequency modulation of silmultaneously transmitted probing ultrasonic waves. Then, the bispectra of the signal x (t) at the frequencies (f0, f0) and (f0, 2f0) are calculated to estimate the nonlinear propagation characteristics as their magnitude ratio, w here since bispectrum is free from the gaussian additive noise we can get the value with high S/N. Basic experimental system is constructed by using 3.0 MHz probing ultrasonic waves and the several experiments are carried out for some phantoms. Results show the superiority of the proposed method to the conventional method using power spectrum and also its usefulness for the tissue characterization. 30541 T00401030541 ^x This paper describes the implementation of a computerized radial pulse diagnosis by aids of a clinical expert. On this base, we composed of the radial pulse diagnosis system in korean traditional medicine. The system composed of a radial pulse wave detection system and a radial pulse diagnosis system. With a detection system, we detected Inyoung and Cheongu radial pulse wave and processed it. Then, we have got the characteristic parameters of radial pulse wave and also quantified that according to the method of Inyoung-Cheongu Comparison Radial Pulse Diagnosis. We defined the jugement standard of radial pulse diagnosis system and then we confirmed the possibility for realization of automatic radial pulse diagnosis in korean traditional medicine. 30545 T00401030545 ^x Microspheres are expected to be applied to biomedical areas such as solid-phase immunoassays, drug delivery systems, immunomagnetic cell separation. To synthesize microspheres for biomedical application, "two stage shot growth method" was developed. The uniformity ratio of synthesized microspheres was always smaller than 1.05. And the surface charge density (or the number of ionizable functional groups) of the microspheres synthesized by "two stage shot growth method" was 6~13 times higher than that of the microspheres synthesized by conventional seeded batch copolymerization. As a previous step for biomedical application, adsorption experiments of bovine albumin on microspheres were carried out under various conditions. The maximum adsorbed amount was obtained in the neighborhood of pH 4.5. Isoelectric point of bovine albumin is pH 5.0, so experimental result shows that it shifted to acid area. The adsorption isotherm was obtained, the plateau region was always reached at 2.Og/L (bulk concentration of bovine albumin).The effect of the kind and the amount of surface functional group was also examined. 30575 T00401030575 ^x A medical image workstation was developed using multimedia technique. The system based on PC-486DX was designed to acquire medical images produced by medical imaging instruments and related audio information, that is, doctors' reporting results. Input information was processed and analyzed, then the results were presented in the form of graph and animation. All the informations of the system were hierarchically related with the image as the apex. Processing and analysis algorithms were implemented so that the diagnostic accuracy could be improved. The diagnosed information can be transferred for patient diagnosis through LAN(local area network). 30592 T00401030592 ^x In the conventional infrared imaging system, complex infrared lens systems are usually used for directing collimated narrow infrared beams into the high speed 2-dimensional optic scanner. In this paper, a simple reflective infrared optic system with a 2-dimensional optic scanner is proposed for the realization of medical infrared thermography system. It has been experimentally proven that the intfrared thermography system composed of the proposed optic system has the temperature resolution of 0.1˚c under the spatial resolution of lmrad, the image matrix size of 256 X 240, and tile imaging time of 4 seconds. 30593 T00401030593 ^x In this paper, MIIS (Medical Image Information System) has been designed and implemented using INGRES RDBMS, which is based on a client/server architecture. The implemented system allows users to register and retrieve patient information, medical images and diagnostic reports. It also provides the function to display these information on workstation windows simultaneously by using the designed menu-driven graphic user interface. The medical image compression/decompression techniques are implemented and integrated into the medical image database system for the efficient data storage and the fast access through the network. 30594 T00401030594 ^x In this paper, computerized BEAM was implemented for the space domain analysis of EEG. Trans-formation from temporal summation to two-dimensional mappings is formed by 4 nearest point inter-polaton method. Methods of representation of BEAM are two. One is dot density method which classify brain electrical potential 9 levels by dot density of gray levels and the other is colour method which classify brain electrical 12 levels by red-green colours. In this BEAM, instantaneous change and average energy distribution over any arbitrary time interval of brain electrical activity could be observed and analyzed easily. In the frequency domain, the distribution of energy spectrum of a special band can easily be distinguished normality and abnormality. 30608 T00401030608 ^x Laboratory information system (LIS) is a key tool to manage laboratory data in clinical pathology. Our department has developed an information system for routine hematology using down-sized computer system. We have used an IBM 486 compatible PC with 16MB main memory, 210 MB hard disk drive, 9 RS-232C port and 24 pin dot printer. The operating system and database management system were SCO UNIX and SCO foxbase, respectively. For program development, we used Xbase language provided by SCO foxbase. The C language was used for interface purpose. To make the system use friendly, pull-down menu was used. The system connected to our hospital information system via application program interface (API), so the information related to patient and request details is automatically transmitted to our computer. Our system interfaced with fwd complete blood count analyzers(Sysmex NE-8000 and Coulter STKS) for unidirectional data tansmission from analyzer to computer. The authors suggests that this system based on down-sized computer could provide a progressive approach to total LIS based on local area network, and the implemented system could serve as a model for other hospital's LIS for routine hematology. 30609 T00401030609 ^x To develop an artificial bone substitute that is gradually degraded and replaced by the regenerated natural bone, the authors designed a composite that is consisted of calcium phosphate and collagen. To use as the structural matrix of the composite, collagen was purified from human umbilical cord. The obtained collagen was treated by pepsin to remove telopeptides, and finally, the immune-free atelocollagen was produced: The cross linked atelocollagen was highly resistant to the collagenase induced collagenolysis. The cross linked collagen demonstrated an improved tensile strength. 30618 T00401030618 ^x This paper is a study on the design of adptive filter for QRS complex detection. We propose a simple adaptive algorithm to increase capability of noise cancelation in QRS complex detection with two stage adaptive filter. At the first stage, background noise is removed and at the next stage, only spectrum of QRS complex components is passed. Two adaptive filters can afford to keep track of the changes of both noise and QRS complex. Each adaptive filter consists of prediction error filter and FIR filter The impulse response of FIR filter uses coefficients of prediction error filter. The detection rates for 105 and 108 of MIT/BIH data base were 99.3% and 97.4% respectively. 30619 T00401030619 ^x To develop an artificial bone substitute that is gradually degraded and replaced by the regenerated natural bone, the authors designed and produced a composite that is consisted of calcium phosphate and collagen. Human umbilical cord origin pepsin treated type I atelocollagen was used as the structural matrix, by which sintered or non-sintered carbonate apatite was encapsulated to form an inorganic-organic composite. With cross linking atelocollagen by UV ray irradiation, the resistance to both compressive and tensile strength was increased. Collagen degradation by the collagenase induced collagenolysis was also decreased. 30620 T00401030620 ^x We have developed a monoleaflet polymer valve as an inexpensive and viable alternative, especially for short-term use in the ventricular assist device or total artificial heart. The frame and leaflet of the polymer valve were made from polyurethane, To evaluate the hemodynamic performance of the polymer valve a comparative study of flow dynamics past a polymer valve and a St. Jude Medical prosthetic valve under physiological pulsatile flow conditions in vitro was made. Comparisons between the valves were made on the transvalvular pressure drop, regurgitation volume and maximum valve opening area. The polymer valve showed smaller regurgitation volume and transvalvular pressure drop compared to the mechanical valve at higher heart rate. The results showed that the functional characteristics of the polymer valve compared favorably with those of the mechanical valve at higher heart rate. 30621 T00401030621 ^x Explosive evaporative removal process of biological tissue by absorption of a CW laser has been simulated by using gelatin and a multimode Nd:YAG laser. Because the point of maximun temperature of laser-irradiated gelatin exists below the surface due to surface cooling, evaporation at the boiling temperature is made explosively from below the surface. The important parameters of this process are the conduction loss to laser power absorption (defined as the conduction-to-laser power parameter, Nk), the convection heat transfer at the surface to conduction loss (defined as Bi), dimensionless extinction coefficient (defined as Br.), and dimensionless irradiation time (defined as Fo). Dependence of Fo on Nk and Bi has been observed by experiment, and the results have been compared with the numerical results obtained by solving a 2-dimensional conduction equation. Fo and explosion depth (from the surface to the point of maximun temperature) are increased when Nk and Bi are increased.To find out the minimum laser power for explosive evaporative removal process, steady state analysis has been also made. The limit of Nk to induce evaporative removal, which is proportional to the inverse of the laser power, has been obtained. 30622 T00401030622 ^x N1 and N2 gross neural action potentials were measured from the round window of the guinea pig cochlea at the onset of the acoustic stimuli. N1-N2 audiograms were made by means of regulating stimulant intensities in order to produce constant N1-N2 potentials as criteria for different input tone pip frequencies. The lowest threshold was measured with an input tone pip I5 dB SPL in intensity and 12 KHz in frequency when the animal was in normal physiological condition. The procedure of experimental measurements is explained in detail. This experimental approach is very useful for the investigation of the Cochlear function. Both noN1inear and active functions of the Cochlea can be monitored by N1-N2 audiograms. 30623 T00401030623 ^x In electrical impedance tomography(EIT), we use boundary current and voltage measurements toprovide the information about the cross-sectional distribution of electrical impedance or resistivity. One of the major problems in EIT has been the inaccessibility of internal voltage or current data in finding the internal impedance values. We propose a new image reconstruction method using internal current density data measured by NMR. We obtained a two-dimensional current density distribution within a phantom by processing the real and imaginary MR images from a 4.77 NMR machine. We implemented a resistivity mage reconstruction algorithm using the finite element method and sensitivity matrix. We presented computer simulation results of the mage reconstruction algorithm and furture direction of the research. 30624 T00401030624 ^x A new method of digital image analysis technique for discrimination of cancer cell was presented in this paper. The object image was the Thyroid eland cells image that was diagnosed as normal and abnormal (two types of abnormal: follicular neoplastic cell, and papillary neoplastic cell), respectively. By using the proposed region segmentation algorithm, the cells were segmented into nucleus. The 16 feature parameters were used to calculate the features of each nucleus. A9 a consequence of using dominant feature parameters method proposed in this paper, discrimination rate of 91.11% was obtained for Thyroid Gland cells. 30625 T00401030625 ^x An electrical stimulator was designed to induce locomotion for paraplegic patients caused by central nervous system injury. Optimal stimulus parameters, which can minimize muscle fatigue and can achieve effective muscle contraction were determined in slow and fast muscles in Sprague-Dawley rats. Stimulus patterns of our stimulator were designed to simulate electromyographic activity monitored during locomotion of normal subjects. Muscle types of the lower extremity were classified according to their mechanical property of contraction, which are slow muscle (msoleus m.) and fast muscle (medial gastrocneminus m., rectus femoris m., vastus lateralis m.). Optimal parameters of electrical stimulation for slow muscles were 20 Hz, 0.2 ms square pulse. For fast muscle, 40 Hz, 0.3 ms square pulse was optimal to produce repeated contraction. Higher stimulus intensity was required when synergistic muscles were stimulated simultaneously than when they were stimulated individually. Electrical stimulation for each muscle was designed to generate bipedal locomotion, so that individual muscles alternate contraction and relaxation to simulate stance and swing phases. Portable electrical stimulator with 16 channels built in microprocessor was constructed and applied to paraplegic patients due to lumbar cord injury. The electrical stimulator restored partially gait function in paraplegic patients. 30626 T00401030626 ^x Two-Dimensional modelling of the Cochlear biomechanics is presented in this paper. The Laplace partial differential equation which represents the fluid mechanics of the Cochlea has been transformed into two-dimensional electrical transmission line. The procedure of this transformation is explained in detail. The comparison between one and two dimensional models is also presented. This electrical modelling of the basilar membrane (BM) is clearly useful for the next approach to the further. Development of active elements which are essential in the producing of the sharp tuning of the BM. This paper shows that two-dimension model is qualitatively better than one-dimensional model both in amplitude and phase responses of the BM displacement. The present model is only for frequency response. However because the model is electrical, the two-dimensional transmission line model can be extended to time response without any difficult. 30627 T00401030627 ^x A method has been proposed for the fully automatic detection of left ventricular endocardial boundary in 2D short axis echocardiogram using geometric model. The procedure has the following three distinct stages. First, the initial center is estimated by the initial center estimation algorithm which is applied to decimated image. Second, the center estimation algorithm is applied to original image and then best-fit elliptic model estimation is processed. Third, best-fit boundary is detected by the cost function which is based on the best-fit elliptic model. The proposed method shows effective result without manual intervention by a human operator. 30628 T00401030628 ^x The intelligent trajectory control method that controls moving direction and average velocity for a prosthetic arm is proposed by pattern recognition and force estimations using EMG signals. Also, we propose the real time trajectory planning method which generates continuous accelleration paths using 3 stage linear filters to minimize the impact to human body induced by arm motions and to reduce the muscle fatigue. We use combination of MLP and fuzzy filter for pattern recognition to estimate the direction of a muscle and Hogan's method for the force estimation. EMG signals are acquired by using a amputation simulator and 2 dimensional joystick motion. The simulation results of proposed prosthetic arm control system using the EMf signals show that the arm is effectively followed the desired trajectory depended on estimated force and direction of muscle movements. 30638 T00401030638 ^x A new neural network architecture for the recognition of patterns from images is proposed, which is partially based on the results of physiological studies. The proposed network is composed of multi-layers and the nerve cells in each layer are connected by spatial filters which approximate receptive fields in optic nerve fields. In the proposed method, patterns recognition for complicated images is carried out using global features as well as local features such as lines and end-points. A new generating method of matched filers representing global features is proposed in this network. 30659 T00401030659 ^x An implementation scheme of the magnetic nerve stimulator using a switching mode power supply is proposed. By using a switching mode power supply rather than a conventional linear power supply for charging high voltage capacitors, the weight and size of the magnetic nerve stimulator can be considerably reduced. Maximum output voltage of the developed magnetic nerve stimulator using the switching mode power supply is 3, 000 volts and switching time is about 100 msec. Experimental results or human nerve stimulations using the developed stimulator are presented. 30768 T00401030768 ^x In this paper, we describe the design methodology and specifications of the developed module-based bedside monitors for patient monitoring. The bedside monitor consists of a main unit and module cases with various parameter modules. The main unit includes a 12.1" TFT color LCD, a main CPU board, and peripherals such as a module controller, Ethernet LAN card, video card, rotate/push button controller, etc. The main unit can connect at maximum three module cases each of which can accommodate up to 7 parameter modules. They include the modules for electrocardiograph, respiration, invasive blood pressure, noninvasive blood pressure, temperature, and SpO2 with Plethysmograph.SpO2 with Plethysmograph.

  • PDF

A Study on Knowledge Entity Extraction Method for Individual Stocks Based on Neural Tensor Network (뉴럴 텐서 네트워크 기반 주식 개별종목 지식개체명 추출 방법에 관한 연구)

  • Yang, Yunseok;Lee, Hyun Jun;Oh, Kyong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.25-38
    • /
    • 2019
  • Selecting high-quality information that meets the interests and needs of users among the overflowing contents is becoming more important as the generation continues. In the flood of information, efforts to reflect the intention of the user in the search result better are being tried, rather than recognizing the information request as a simple string. Also, large IT companies such as Google and Microsoft focus on developing knowledge-based technologies including search engines which provide users with satisfaction and convenience. Especially, the finance is one of the fields expected to have the usefulness and potential of text data analysis because it's constantly generating new information, and the earlier the information is, the more valuable it is. Automatic knowledge extraction can be effective in areas where information flow is vast, such as financial sector, and new information continues to emerge. However, there are several practical difficulties faced by automatic knowledge extraction. First, there are difficulties in making corpus from different fields with same algorithm, and it is difficult to extract good quality triple. Second, it becomes more difficult to produce labeled text data by people if the extent and scope of knowledge increases and patterns are constantly updated. Third, performance evaluation is difficult due to the characteristics of unsupervised learning. Finally, problem definition for automatic knowledge extraction is not easy because of ambiguous conceptual characteristics of knowledge. So, in order to overcome limits described above and improve the semantic performance of stock-related information searching, this study attempts to extract the knowledge entity by using neural tensor network and evaluate the performance of them. Different from other references, the purpose of this study is to extract knowledge entity which is related to individual stock items. Various but relatively simple data processing methods are applied in the presented model to solve the problems of previous researches and to enhance the effectiveness of the model. From these processes, this study has the following three significances. First, A practical and simple automatic knowledge extraction method that can be applied. Second, the possibility of performance evaluation is presented through simple problem definition. Finally, the expressiveness of the knowledge increased by generating input data on a sentence basis without complex morphological analysis. The results of the empirical analysis and objective performance evaluation method are also presented. The empirical study to confirm the usefulness of the presented model, experts' reports about individual 30 stocks which are top 30 items based on frequency of publication from May 30, 2017 to May 21, 2018 are used. the total number of reports are 5,600, and 3,074 reports, which accounts about 55% of the total, is designated as a training set, and other 45% of reports are designated as a testing set. Before constructing the model, all reports of a training set are classified by stocks, and their entities are extracted using named entity recognition tool which is the KKMA. for each stocks, top 100 entities based on appearance frequency are selected, and become vectorized using one-hot encoding. After that, by using neural tensor network, the same number of score functions as stocks are trained. Thus, if a new entity from a testing set appears, we can try to calculate the score by putting it into every single score function, and the stock of the function with the highest score is predicted as the related item with the entity. To evaluate presented models, we confirm prediction power and determining whether the score functions are well constructed by calculating hit ratio for all reports of testing set. As a result of the empirical study, the presented model shows 69.3% hit accuracy for testing set which consists of 2,526 reports. this hit ratio is meaningfully high despite of some constraints for conducting research. Looking at the prediction performance of the model for each stocks, only 3 stocks, which are LG ELECTRONICS, KiaMtr, and Mando, show extremely low performance than average. this result maybe due to the interference effect with other similar items and generation of new knowledge. In this paper, we propose a methodology to find out key entities or their combinations which are necessary to search related information in accordance with the user's investment intention. Graph data is generated by using only the named entity recognition tool and applied to the neural tensor network without learning corpus or word vectors for the field. From the empirical test, we confirm the effectiveness of the presented model as described above. However, there also exist some limits and things to complement. Representatively, the phenomenon that the model performance is especially bad for only some stocks shows the need for further researches. Finally, through the empirical study, we confirmed that the learning method presented in this study can be used for the purpose of matching the new text information semantically with the related stocks.