• Title/Summary/Keyword: Information input algorithm

Search Result 2,444, Processing Time 0.059 seconds

On Implementing the Digital DTMF Receiver Using PARCOR Analysis Method (PARCOR 분석 방법에 의한 디지털 DTMF 수신기 구현에 관한 연구)

  • Ha, Pan Bong;ANN, Souguil
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.2
    • /
    • pp.196-200
    • /
    • 1987
  • The following methods are proposed for implementing digital dual tone multi-frequency (DTMF) receiver: using infinite impulse response(IIR) digital filters, period-counting algorithm, discrete Fourier transform(DFT), and fast Fourier transform(FFT)[2]. The PARCOR(Partical Correlation) analysis method which has been widly used in the speech signal processing area is applied to the dual tone multi-frequency(DTMF) signal detection. This method is easy to implement digitally and stronger to digit simulation of speech than any other methods proposed up to date. Since sampling rate of 4KHz is used in the DTMF receiver for the detection of input DTMF signal originally sampled at 8KHz, it effects two times higher multiplexing efficiency.

  • PDF

Bitcoin Algorithm Trading using Genetic Programming

  • Monira Essa Aloud
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.210-218
    • /
    • 2023
  • The author presents a simple data-driven intraday technical indicator trading approach based on Genetic Programming (GP) for return forecasting in the Bitcoin market. We use five trend-following technical indicators as input to GP for developing trading rules. Using data on daily Bitcoin historical prices from January 2017 to February 2020, our principal results show that the combination of technical analysis indicators and Artificial Intelligence (AI) techniques, primarily GP, is a potential forecasting tool for Bitcoin prices, even outperforming the buy-and-hold strategy. Sensitivity analysis is employed to adjust the number and values of variables, activation functions, and fitness functions of the GP-based system to verify our approach's robustness.

Fuel Consumption Prediction and Life Cycle History Management System Using Historical Data of Agricultural Machinery

  • Jung Seung Lee;Soo Kyung Kim
    • Journal of Information Technology Applications and Management
    • /
    • v.29 no.5
    • /
    • pp.27-37
    • /
    • 2022
  • This study intends to link agricultural machine history data with related organizations or collect them through IoT sensors, receive input from agricultural machine users and managers, and analyze them through AI algorithms. Through this, the goal is to track and manage the history data throughout all stages of production, purchase, operation, and disposal of agricultural machinery. First, LSTM (Long Short-Term Memory) is used to estimate oil consumption and recommend maintenance from historical data of agricultural machines such as tractors and combines, and C-LSTM (Convolution Long Short-Term Memory) is used to diagnose and determine failures. Memory) to build a deep learning algorithm. Second, in order to collect historical data of agricultural machinery, IoT sensors including GPS module, gyro sensor, acceleration sensor, and temperature and humidity sensor are attached to agricultural machinery to automatically collect data. Third, event-type data such as agricultural machine production, purchase, and disposal are automatically collected from related organizations to design an interface that can integrate the entire life cycle history data and collect data through this.

The development of module for automatic extraction and database construction of BIM based shape-information reconstructed on spatial information (공간정보를 중심으로 재구성한 BIM 기반 형상정보의 자동추출 및 데이터베이스 구축 모듈 개발)

  • Choi, Jun-Woo;Kim, Shin;Song, Young-hak;Park, Kyung-Soon
    • Journal of the Regional Association of Architectural Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.81-87
    • /
    • 2018
  • In this paper, in order to maximize the input process efficiency of the building energy simulation field, the authors developed the automatic extraction module of spatial information based BIM geometry information. Existing research or software extracts geometry information based on object information, but it can not be used in the field of energy simulation because it is inconsistent with the geometry information of the object constituting the thermal zone of the actual building model. Especially, IFC-based geometry information extraction module is needed to link with other architectural fields from the viewpoint of reuse of building information. The study method is as follows. (1) Grasp the category and attribute information to be extracted for energy simulation and Analyze the IFC structure based on spatial information (2) Design the algorithm for extracting and reprocessing information for energy simulation from IFC file (use programming language Phython) (3) Develop the module that generates a geometry information database based on spatial information using reprocessed information (4) Verify the accuracy of the development module. In this paper, the reprocessed information can be directly used for energy simulation and it can be widely used regardless of the kind of energy simulation software because it is provided in database format. Therefore, it is expected that the energy simulation process efficiency in actual practice can be maximized.

A Novel High-speed CMOS Level-Up/Down Shifter Design for Dynamic-Voltage/Frequency-Scaling Algorithm (Dynamic-Voltage/Frequency-Scaling 알고리즘에서의 다중 인가 전압 조절 시스템 용 High-speed CMOS Level-Up/Down Shifter)

  • Lim Ji-Hoon;Ha Jong-Chan;Wee Jae-Kyung;Moon Gyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.6 s.348
    • /
    • pp.9-17
    • /
    • 2006
  • We proposed a new High-speed CMOS Level Up/Down Shifter circuits that can be used with Dynamic Voltage and Frequency Scaling(DVFS) algorithm, for low power system in the SoC(System-on-Chip). This circuit used to interface between the other voltage levels in each CMOS circuit boundary, or between multiple core voltage levels in a system bus. Proposed circuit have advantage that decrease speed attenuation and duty ratio distortion problems for interface. The level up/down shifter of the proposed circuit designed that operated from multi core voltages$(0.6\sim1.6V)$ to used voltage level for each IP at the 500MHz input frequency The proposed circuit supports level up shifting from the input voltage levels, that are standard I/O voltages 1.8V, 2.5V, 3.3V, to multiple core voltage levels in between of $0.6V\sim1.6V$, that are used internally in the system. And level down shifter reverse operated at 1Ghz input frequency for same condition. Simulations results are shown to verify the proposed function by Hspice simulation, with $0.6V\sim1.6V$ CMOS Process, $0.13{\mu}m$ IBM CMOS Process and $0.65{\mu}m$ CMOS model parameters. Moreover, it is researched delay time, power dissipation and duty ration distortion of the output voltage witch is proportional to the operating frequency for the proposed circuit.

The GOCI-II Early Mission Marine Fog Detection Products: Optical Characteristics and Verification (천리안 해양위성 2호(GOCI-II) 임무 초기 해무 탐지 산출: 해무의 광학적 특성 및 초기 검증)

  • Kim, Minsang;Park, Myung-Sook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1317-1328
    • /
    • 2021
  • This study analyzes the early satellite mission marine fog detection results from Geostationary Ocean Color Imager-II (GOCI-II). We investigate optical characteristics of the GOCI-II spectral bands for marine fog between October 2020 and March 2021 during the overlapping mission period of Geostationary Ocean Color Imager (GOCI) and GOCI-II. For Rayleigh-corrected reflection (Rrc) at 412 nm band available for the input of the GOCI-II marine fog algorithm, the inter-comparison between GOCI and GOCI-II data showed a small Root Mean Square Error (RMSE) value (0.01) with a high correlation coefficient (0.988). Another input variable, Normalized Localization Standard (NLSD), also shows a reasonable correlation (0.798) between the GOCI and GOCI-II data with a small RMSE value (0.007). We also found distinctive optical characteristics between marine fog and clouds by the GOCI-II observations, showing the narrower distribution of all bands' Rrc values centered at high values for cloud compared to marine fog. The GOCI-II marine fog detection distribution for actual cases is similar to the GOCI but more detailed due to the improved spatial resolution from 500 m to 250 m. The validation with the automated synoptic observing system (ASOS) visibility data confirms the initial reliability of the GOCI-II marine fog detection. Also, it is expected to improve the performance of the GOCI-II marine fog detection algorithm by adding sufficient samples to verify stable performance, improving the post-processing process by replacing real-time available cloud input data and reducing false alarm by adding aerosol information.

Water Level Prediction on the Golok River Utilizing Machine Learning Technique to Evaluate Flood Situations

  • Pheeranat Dornpunya;Watanasak Supaking;Hanisah Musor;Oom Thaisawasdi;Wasukree Sae-tia;Theethut Khwankeerati;Watcharaporn Soyjumpa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.31-31
    • /
    • 2023
  • During December 2022, the northeast monsoon, which dominates the south and the Gulf of Thailand, had significant rainfall that impacted the lower southern region, causing flash floods, landslides, blustery winds, and the river exceeding its bank. The Golok River, located in Narathiwat, divides the border between Thailand and Malaysia was also affected by rainfall. In flood management, instruments for measuring precipitation and water level have become important for assessing and forecasting the trend of situations and areas of risk. However, such regions are international borders, so the installed measuring telemetry system cannot measure the rainfall and water level of the entire area. This study aims to predict 72 hours of water level and evaluate the situation as information to support the government in making water management decisions, publicizing them to relevant agencies, and warning citizens during crisis events. This research is applied to machine learning (ML) for water level prediction of the Golok River, Lan Tu Bridge area, Sungai Golok Subdistrict, Su-ngai Golok District, Narathiwat Province, which is one of the major monitored rivers. The eXtreme Gradient Boosting (XGBoost) algorithm, a tree-based ensemble machine learning algorithm, was exploited to predict hourly water levels through the R programming language. Model training and testing were carried out utilizing observed hourly rainfall from the STH010 station and hourly water level data from the X.119A station between 2020 and 2022 as main prediction inputs. Furthermore, this model applies hourly spatial rainfall forecasting data from Weather Research and Forecasting and Regional Ocean Model System models (WRF-ROMs) provided by Hydro-Informatics Institute (HII) as input, allowing the model to predict the hourly water level in the Golok River. The evaluation of the predicted performances using the statistical performance metrics, delivering an R-square of 0.96 can validate the results as robust forecasting outcomes. The result shows that the predicted water level at the X.119A telemetry station (Golok River) is in a steady decline, which relates to the input data of predicted 72-hour rainfall from WRF-ROMs having decreased. In short, the relationship between input and result can be used to evaluate flood situations. Here, the data is contributed to the Operational support to the Special Water Resources Management Operation Center in Southern Thailand for flood preparedness and response to make intelligent decisions on water management during crisis occurrences, as well as to be prepared and prevent loss and harm to citizens.

  • PDF

A Study on 3D RTLS at Port Container Yards Using the Extended Kalman Filter

  • Kim, Joeng-Hoon;Lee, Hyun-Woo;Kwon, Soon-Ryang
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.228-235
    • /
    • 2007
  • The main purpose of this paper is to manage the container property effectively at the container yard by applying the RTLS technology to the field of port logistics. Yet, many kinds of noises happen to be inputted with the distance value(between the reader and the tag) which is to be inputted into the location identification algorithm, which makes the distance value jumped due to the system noise of the ultrasonic sensor module and the measurement noise. The Kalman Filter is widely used to prevent this jump occurrence; the noises are eliminated by using the EKF(Extended Kalman Filter) while considering that the distance information of the ultrasonic sensor is non-linear. Also, the 3D RTLS system at the port container yard suggested in this research is designed not to be interrupted for its ultrasonic transmission by positioning the antenna at the front of each sector of the container where the active tags are installed. We positioned the readers, which function as antennas for location identification, to four places randomly in the absolute coordinate and let the positions of the active tags identified by using the distance data delivered from the active tags. For the location identification algorithm used in this paper, the triangulation measurement that is most used in general is applied and newly reorganized to calculate the position of the container. In the first experiment, we dealt with the error resulting in the angle and the distance of the ultrasonic sensor module, which is the most important in the hardware performance; in the second, we evaluated the performance of the location identification algorithm, which is the most important in the software performance, and tested the noise cancellation effects for the EKF. According to the experiment result, the ultrasonic sensor showed an average of 3 to 5cm error up to $45^{\circ}$ in case of $60^{\circ}$ or more, non-reliable linear distances were obtained. In addition, the evaluation of the algorithm performance showed an average of $4^{\circ}{\sim}5^{\circ}$ error due to the error of the linear distance-this error is negligible for most container location identifications. Lastly, the experiment results of noise cancellation and jump preservation by using the EKF showed that noises were removed in the distance information which was entered from the input of the ultrasonic sensor and as a result, only signal was extracted; thus, jumps were able to be removed and the exact distance information between the ultrasonic sensors could be obtained.

A Compressed Sensing-Based Signal Detection Technique for Generalized Space Shift Keying Systems (일반화된 공간천이변조 시스템에서 압축센싱기술을 이용한 수신신호 복호 알고리즘)

  • Park, Jeonghong;Ban, Tae Won;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1557-1564
    • /
    • 2014
  • In this paper, we propose a signal detection technique based on the parallel orthogonal matching pursuit (POMP) is proposed for generalized shift space keying (GSSK) systems, which is a modified version of the orthogonal matching pursuit (OMP) that is widely used as a greedy algorithm for sparse signal recovery. The signal recovery problem in the GSSK systems is similar to that in the compressed sensing (CS). In the proposed POMP technique, multiple indexes which have the maximum correlation between the received signal and the channel matrix are selected at the first iteration, while a single index is selected in the OMP algorithm. Finally, the index yielding the minimum residual between the received signal and the M recovered signals is selected as an estimate of the original transmitted signal. POMP with Quantization (POMP-Q) is also proposed, which combines the POMP technique with the signal quantization at each iteration. The proposed POMP technique induces the computational complexity M times, compared with the OMP, but the performance of the signal recovery significantly outperform the conventional OMP algorithm.

Lane and Curvature Detection Algorithm based on the Curve Template Matching Method using Top View Image (탑뷰(top view) 영상을 이용한 곡선 템플릿 정합 기반 차선 및 곡률 검출 알고리즘)

  • Han, Sung-Ji;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.97-106
    • /
    • 2010
  • In this paper, lane and curvature detection algorithm based on the curve template matching method is proposed. To eliminate the perspective effect of the original image, the input image is transformed to a top view image. From this top view image, its edge image is created. To increase the accuracy of detection, a novel edge detection method, which shows a strength in lane detection, is proposed. In the first step, straight lanes are detected from the edge image, and then the Curve Template Matching(CTM) method is applied to detect the curved lanes and to find their curvatures. Since the proposed CTM method uses only the simple equations, such as line and circle equations, to detect the curved lane, the algorithm is simple. Moreover, we used the detected lane information in the previous frames to detect the current frame's lanes, the detection results become more reliable. The proposed algorithm has been tested in various road conditions (highway, urban street, night time highway, etc.). Experimental results show that the proposed algorithm can process about 70 frames per second with the successful lane detection rate over 95% and curvature detection rate about 90%.