• Title/Summary/Keyword: Information input algorithm

Search Result 2,444, Processing Time 0.03 seconds

IR LED Marker Detection Method for Production of Multiple Marker based on Augmented Reality (다수 마커의 제작을 위한 증강현실 기반의 IR LED 마커 검출 기법)

  • Lee, Hye-Mi;Ryu, Nam-Hoon;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.3
    • /
    • pp.457-463
    • /
    • 2011
  • As computer related technologies are developed, interests in augmented reality technologies are greatly increasing. Augmented reality is a technology that composes digital contents from the real input images through camera and it enables interaction with users. This study designed a directional marker using LED light that emits infrared ray, then, provided a detection algorithm and a marker information extraction method that can realize various virtual objects as augmented reality from one marker. The newly designed method provides a solution to settle the problems in existing marker technologies such as decrease of immersiveness and read rate and single information expression, and at the same time it can minimize the cost or time consumption in marker information storage.

Syntactic Structured Framework for Resolving Reflexive Anaphora in Urdu Discourse Using Multilingual NLP

  • Nasir, Jamal A.;Din, Zia Ud.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1409-1425
    • /
    • 2021
  • In wide-ranging information society, fast and easy access to information in language of one's choice is indispensable, which may be provided by using various multilingual Natural Language Processing (NLP) applications. Natural language text contains references among different language elements, called anaphoric links. Resolving anaphoric links is a key problem in NLP. Anaphora resolution is an essential part of NLP applications. Anaphoric links need to be properly interpreted for clear understanding of natural languages. For this purpose, a mechanism is desirable for the identification and resolution of these naturally occurring anaphoric links. In this paper, a framework based on Hobbs syntactic approach and a system developed by Lappin & Leass is proposed for resolution of reflexive anaphoric links, present in Urdu text documents. Generally, anaphora resolution process takes three main steps: identification of the anaphor, location of the candidate antecedent(s) and selection of the appropriate antecedent. The proposed framework is based on exploring the syntactic structure of reflexive anaphors to find out various features for constructing heuristic rules to develop an algorithm for resolving these anaphoric references. System takes Urdu text containing reflexive anaphors as input, and outputs Urdu text with resolved reflexive anaphoric links. Despite having scarcity of Urdu resources, our results are encouraging. The proposed framework can be utilized in multilingual NLP (m-NLP) applications.

Hybrid Fuzzy Association Structure for Robust Pet Dog Disease Information System

  • Kim, Kwang Baek;Song, Doo Heon;Jun Park, Hyun
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.4
    • /
    • pp.234-240
    • /
    • 2021
  • As the number of pet dog-related businesses is rising rapidly, there is an increasing need for reliable pet dog health information systems for casual pet owners, especially those caring for older dogs. Our goal is to implement a mobile pre-diagnosis system that can provide a first-hand pre-diagnosis and an appropriate coping strategy when the pet owner observes abnormal symptoms. Our previous attempt, which is based on the fuzzy C-means family in inference, performs well when only relevant symptoms are provided for the query, but this assumption is not realistic. Thus, in this paper, we propose a hybrid inference structure that combines fuzzy association memory and a double-layered fuzzy C-means algorithm to infer the probable disease with robustness, even when noisy symptoms are present in the query provided by the user. In the experiment, it is verified that our proposed system is more robust when noisy (irrelevant) input symptoms are provided and the inferred results (probable diseases) are more cohesive than those generated by the single-phase fuzzy C-means inference engine.

Implementation of a Spam Message Filtering System using Sentence Similarity Measurements (문장유사도 측정 기법을 통한 스팸 필터링 시스템 구현)

  • Ou, SooBin;Lee, Jongwoo
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.1
    • /
    • pp.57-64
    • /
    • 2017
  • Short message service (SMS) is one of the most important communication methods for people who use mobile phones. However, illegal advertising spam messages exploit people because they can be used without the need for friend registration. Recently, spam message filtering systems that use machine learning have been developed, but they have some disadvantages such as requiring many calculations. In this paper, we implemented a spam message filtering system using the set-based POI search algorithm and sentence similarity without servers. This algorithm can judge whether the input query is a spam message or not using only letter composition without any server computing. Therefore, we can filter the spam message although the input text message has been intentionally modified. We added a specific preprocessing option which aims to enable spam filtering. Based on the experimental results, we observe that our spam message filtering system shows better performance than the original set-based POI search algorithm. We evaluate the proposed system through extensive simulation. According to the simulation results, the proposed system can filter the text message and show high accuracy performance against the text message which cannot be filtered by the 3 major telecom companies.

Short-term Traffic States Prediction Using k-Nearest Neighbor Algorithm: Focused on Urban Expressway in Seoul (k-NN 알고리즘을 활용한 단기 교통상황 예측: 서울시 도시고속도로 사례)

  • KIM, Hyungjoo;PARK, Shin Hyoung;JANG, Kitae
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.2
    • /
    • pp.158-167
    • /
    • 2016
  • This study evaluates potential sources of errors in k-NN(k-nearest neighbor) algorithm such as procedures, variables, and input data. Previous research has been thoroughly reviewed for understanding fundamentals of k-NN algorithm that has been widely used for short-term traffic states prediction. The framework of this algorithm commonly includes historical data smoothing, pattern database, similarity measure, k-value, and prediction horizon. The outcomes of this study suggests that: i) historical data smoothing is recommended to reduce random noise of measured traffic data; ii) the historical database should contain traffic state information on both normal and event conditions; and iii) trial and error method can improve the prediction accuracy by better searching for the optimum input time series and k-value. The study results also demonstrates that predicted error increases with the duration of prediction horizon and rapidly changing traffic states.

Line-Segment Feature Analysis Algorithm for Handwritten-Digits Data Reduction (필기체 숫자 데이터 차원 감소를 위한 선분 특징 분석 알고리즘)

  • Kim, Chang-Min;Lee, Woo-Beom
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.4
    • /
    • pp.125-132
    • /
    • 2021
  • As the layers of artificial neural network deepens, and the dimension of data used as an input increases, there is a problem of high arithmetic operation requiring a lot of arithmetic operation at a high speed in the learning and recognition of the neural network (NN). Thus, this study proposes a data dimensionality reduction method to reduce the dimension of the input data in the NN. The proposed Line-segment Feature Analysis (LFA) algorithm applies a gradient-based edge detection algorithm using median filters to analyze the line-segment features of the objects existing in an image. Concerning the extracted edge image, the eigenvalues corresponding to eight kinds of line-segment are calculated, using 3×3 or 5×5-sized detection filters consisting of the coefficient values, including [0, 1, 2, 4, 8, 16, 32, 64, and 128]. Two one-dimensional 256-sized data are produced, accumulating the same response values from the eigenvalue calculated with each detection filter, and the two data elements are added up. Two LFA256 data are merged to produce 512-sized LAF512 data. For the performance evaluation of the proposed LFA algorithm to reduce the data dimension for the recognition of handwritten numbers, as a result of a comparative experiment, using the PCA technique and AlexNet model, LFA256 and LFA512 showed a recognition performance respectively of 98.7% and 99%.

Time Series Pattern Recognition based on Branch and Bound Dynamic Time Warping (분기 한정적인 동적 타임 워핑 기반의 시계열 패턴인식)

  • Jang, Seok-Woo;Park, Young-Jae;Kim, Gye-Young
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.7
    • /
    • pp.584-589
    • /
    • 2010
  • The dynamic time warping algorithm generally used in time series pattern recognition spends most of the time in generating the correlation table, and it establishes the global path constraint to reduce the corresponding time complexity. However, the constraint restrains just in terms of the time axis, not considering the contents of input patterns. In this paper, we therefore propose an efficient branch and bound dynamic time warping algorithm which sets the global constraints by adaptively reflecting the patterns. The experimental results show that the proposed method outperforms conventional methods in terms of the speed and accuracy.

An FPGA-based Parallel Hardware Architecture for Real-time Eye Detection

  • Kim, Dong-Kyun;Jung, Jun-Hee;Nguyen, Thuy Tuong;Kim, Dai-Jin;Kim, Mun-Sang;Kwon, Key-Ho;Jeon, Jae-Wook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.2
    • /
    • pp.150-161
    • /
    • 2012
  • Eye detection is widely used in applications, such as face recognition, driver behavior analysis, and human-computer interaction. However, it is difficult to achieve real-time performance with software-based eye detection in an embedded environment. In this paper, we propose a parallel hardware architecture for real-time eye detection. We use the AdaBoost algorithm with modified census transform(MCT) to detect eyes on a face image. We parallelize part of the algorithm to speed up processing. Several downscaled pyramid images of the eye candidate region are generated in parallel using the input face image. We can detect the left and the right eye simultaneously using these downscaled images. The sequential data processing bottleneck caused by repetitive operation is removed by employing a pipelined parallel architecture. The proposed architecture is designed using Verilog HDL and implemented on a Virtex-5 FPGA for prototyping and evaluation. The proposed system can detect eyes within 0.15 ms in a VGA image.

Comments on the Computation of Sun Position for Sun Tracking System (태양추적장치를 위한 태양위치계산에서의 제언)

  • Park, Young Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.6
    • /
    • pp.47-59
    • /
    • 2016
  • As the usage of sun tracking system in solar energy utilization facility increases, requirement of more accurate computation of sun position has also been increased. Accordingly, various algorithms to compute the sun position have been proposed in the literature and some of them insist that their algorithms guarantee less than 0.01 degree computational error. However, mostly, the true meaning of accuracy argued in their publication is not clearly explained. In addition to that, they do not clearly state under what condition the accuracy they proposed can be guaranteed. Such ambiguity may induce misunderstanding on the accuracy of the computed sun position and ultimately may make misguided notion on the actual sun tracking system's sun tracking accuracy. This work presents some comments related to the implementation of sun position computational algorithm for the sun tracking system. We first introduce the algorithms proposed in the literature. And then, from sun tracking system user's point of view, we explain the true meaning of accuracy of computed sun position. We also discuss how to select the proper algorithm for the actual implementation. We finally discuss how the input factors used in computation of sun position, like time, position etc, affect the computed sun position accuracy.

Pseudo-Distance Map Based Watersheds for Robust Region Segmentation

  • Jeon, Byoung-Ki;Jang, Jeong-Hun;Hong, Ki-Sang
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.283-286
    • /
    • 2001
  • In this paper, we present a robust region segmentation method based on the watershed transformation of a pseudo-distance map (PDM). A usual approach for the segmentation of a gray-scale image with the watershed algorithm is to apply it to a gradient magnitude image or the Euclidean distance map (EDM) of an edge image. However, it is well known that this approach suffers from the oversegmentation of the given image due to noisy gradients or spurious edges caused by a thresholding operation. In this paper we show thor applying the watershed algorithm to the EDM, which is a regularized version of the EDM and is directly computed form the edgestrength function (ESF) of the input image, significantly reduces the oversegmentation, and the final segmentation results obtained by a simple region-merging process are more reliable and less noisy than those of the gradient-or EDM-based methods. We also propose a simple and efficient region-merging criterion considering both boundary strengths and inner intensities of regions to be merged. The robustness of our method is proven by testing it with a variety of synthetic and real images.

  • PDF