• Title/Summary/Keyword: Information input algorithm

Search Result 2,444, Processing Time 0.03 seconds

Segmentation of MR Brain Image Using Scale Space Filtering and Fuzzy Clustering (스케일 스페이스 필터링과 퍼지 클러스터링을 이용한 뇌 자기공명영상의 분할)

  • 윤옥경;김동휘;박길흠
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.4
    • /
    • pp.339-346
    • /
    • 2000
  • Medical image is analyzed to get an anatomical information for diagnostics. Segmentation must be preceded to recognize and determine the lesion more accurately. In this paper, we propose automatic segmentation algorithm for MR brain images using T1-weighted, T2-weighted and PD images complementarily. The proposed segmentation algorithm is first, extracts cerebrum images from 3 input images using cerebrum mask which is made from PD image. And next, find 3D clusters corresponded to cerebrum tissues using scale filtering and 3D clustering in 3D space which is consisted of T1, T2, and PD axis. Cerebrum images are segmented using FCM algorithm with its initial centroid as the 3D cluster's centroid. The proposed algorithm improved segmentation results using accurate cluster centroid as initial value of FCM algorithm and also can get better segmentation results using multi spectral analysis than single spectral analysis.

  • PDF

Edge Enhanced Error Diffusion with Blue Noise Mask Threshold Modulation (청색잡음 마스크 임계값변조를 이용한 경계강조 오차확산법)

  • Lee, Eul-Hwan;Park, Jang-Sik;Park, Chang-Dae;Kim, Jae-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.10
    • /
    • pp.72-82
    • /
    • 1999
  • The error diffusion algorithm is excellent for reproducing continuous gray-scale images to bianry images and also has good edge characteristics. However, it is well known that artifacts with objectionable patterns can occur in the halftoned images. On the other hand, a halftone algorithm using blue noise mask has been proposed. where the halftoning is achieved by a pixelwise comparison of gray-scale image with an array, the blue noise mask. It doesn't have pattern artifacts, but the halftoned image looks unclear because the quantization errors are not feedbacked compared to the error diffusion. In this paper, edge enhanced error diffusion which dithers the threshold with the blue noise mask is proposed. We show that the proposed algorithm can produce unstructured and edge enhanced halftone images. This algorithm is analyzed by the concept of an equivalent input image. The performace of the proposed algorithm is compared with that of the conventional halftoning by measuring the radially averaged power spectrum and edge correlation.

  • PDF

Digital Predistortion Algorithm using Techniques of Temperature Compensation (온도보상 기법을 적용한 디지털 방식의 사전 왜곡제거기 알고리듬)

  • Ko, Young-En;Bang, Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.9 s.339
    • /
    • pp.1-10
    • /
    • 2005
  • In this paper, we proposed predistortion algerian that can compensate temperature distortion by digital. Predistortion algorithm produces compensation value of distortion by temperature as well as system nonlinear distortion by input level, and warps beforehand signal of baseband. To prove excellency of such algorithm we applied predistortion algorithm to Saleh's high power amplifier model, and did computer simulation. As a result, P1dB increased about 0.5 dBm phase shift reduced about $0.8^{o}$ than existent the A&P PD, and predistiortion algorithm to apply temperature compensation techniques improved P1dB about 2dBm and stabilized phase shift by about $0.1^{o}$ low. When approved UMTS's sample signal to this amplifier, IMD3 of amplifier decreased 10dBm than is no temperature compensation techniques, and reduced 19dBm than signal that is no distortion.

Analysis of suitable evacuation routes through multi-agent system simulation within buildings

  • Castillo Osorio, Ever Enrique;Seo, Min Song;Yoo, Hwan Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.5
    • /
    • pp.265-278
    • /
    • 2021
  • When a dangerous event arises for people inside a building and an immediate evacuation is required, it is important that suitable routes have been previously defined. These situations can happen especially when buildings are crowded, making the occupants have a very high vulnerability and can be trapped if they do not evacuate quickly and safely. However, in most cases, routes are considered based just on their proximity or short distance to the exit areas, and evacuation simulations that include more variables are not performed. This work aims to propose a methodology for building's indoor evacuation activities under the premise of processing simulation scenarios in multi-agent environments. In the methodology, importance indexes of simplified and validated geometry data from a BIM (Building Information Modeling) are considered as heuristic input data in a proposed algorithm. The algorithm is based on AP-Theta* pathfinding and collision avoidance machine learning techniques. It also includes conditioning variables such as the number of people, speed of movement as well as reaction ability of the agents that influence the evacuation times. Moreover, collision avoidance is applied between people or with objects along the route. The simulations using the proposed algorithm are tested in NetLogo for diverse scenarios, showing feasible evacuation routes and calculating evacuation times in a multi-agent environment. The experimental results are obtained by applying the method in a study case and demonstrate the level of effectiveness of the algorithm, and the influence of the conditioning variables analyzed together when performing safe evacuation routes.

The Design of Feature Selecting Algorithm for Sleep Stage Analysis (수면단계 분석을 위한 특징 선택 알고리즘 설계)

  • Lee, JeeEun;Yoo, Sun K.
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.207-216
    • /
    • 2013
  • The aim of this study is to design a classifier for sleep stage analysis and select important feature set which shows sleep stage well based on physiological signals during sleep. Sleep has a significant effect on the quality of human life. When people undergo lack of sleep or sleep-related disease, they are likely to reduced concentration and cognitive impairment affects, etc. Therefore, there are a lot of research to analyze sleep stage. In this study, after acquisition physiological signals during sleep, we do pre-processing such as filtering for extracting features. The features are used input for the new combination algorithm using genetic algorithm(GA) and neural networks(NN). The algorithm selects features which have high weights to classify sleep stage. As the result of this study, accuracy of the algorithm is up to 90.26% with electroencephalography(EEG) signal and electrocardiography(ECG) signal, and selecting features are alpha and delta frequency band power of EEG signal and standard deviation of all normal RR intervals(SDNN) of ECG signal. We checked the selected features are well shown that they have important information to classify sleep stage as doing repeating the algorithm. This research could use for not only diagnose disease related to sleep but also make a guideline of sleep stage analysis.

Artificial Neural Network with Firefly Algorithm-Based Collaborative Spectrum Sensing in Cognitive Radio Networks

  • Velmurugan., S;P. Ezhumalai;E.A. Mary Anita
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1951-1975
    • /
    • 2023
  • Recent advances in Cognitive Radio Networks (CRN) have elevated them to the status of a critical instrument for overcoming spectrum limits and achieving severe future wireless communication requirements. Collaborative spectrum sensing is presented for efficient channel selection because spectrum sensing is an essential part of CRNs. This study presents an innovative cooperative spectrum sensing (CSS) model that is built on the Firefly Algorithm (FA), as well as machine learning artificial neural networks (ANN). This system makes use of user grouping strategies to improve detection performance dramatically while lowering collaboration costs. Cooperative sensing wasn't used until after cognitive radio users had been correctly identified using energy data samples and an ANN model. Cooperative sensing strategies produce a user base that is either secure, requires less effort, or is faultless. The suggested method's purpose is to choose the best transmission channel. Clustering is utilized by the suggested ANN-FA model to reduce spectrum sensing inaccuracy. The transmission channel that has the highest weight is chosen by employing the method that has been provided for computing channel weight. The proposed ANN-FA model computes channel weight based on three sets of input parameters: PU utilization, CR count, and channel capacity. Using an improved evolutionary algorithm, the key principles of the ANN-FA scheme are optimized to boost the overall efficiency of the CRN channel selection technique. This study proposes the Artificial Neural Network with Firefly Algorithm (ANN-FA) for cognitive radio networks to overcome the obstacles. This proposed work focuses primarily on sensing the optimal secondary user channel and reducing the spectrum handoff delay in wireless networks. Several benchmark functions are utilized We analyze the efficacy of this innovative strategy by evaluating its performance. The performance of ANN-FA is 22.72 percent more robust and effective than that of the other metaheuristic algorithm, according to experimental findings. The proposed ANN-FA model is simulated using the NS2 simulator, The results are evaluated in terms of average interference ratio, spectrum opportunity utilization, three metrics are measured: packet delivery ratio (PDR), end-to-end delay, and end-to-average throughput for a variety of different CRs found in the network.

Fast information extraction algorithm for object-based MPEG-4 conversion from MPEG-1,2 (MPEG-1,2로부터 객체 기반 MPEG-4 변환을 위한 고속 정보 추출 알고리즘)

  • 양종호;박성욱
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.3
    • /
    • pp.91-102
    • /
    • 2004
  • In this paper, a fast information extraction algorithm for object-based MPEG-4 application from MPEG-1,2 is proposed. For object-based MPEG-4 conversion, we need to extract such information as object-image, shape-image, macro-block motion vector, and header information from MPEG-1,2 bit-stream. If we use the extracted information, fast conversion for object-based MPEG-4 is possible. The proposed object extraction algerian has two important steps, namely the motion vector extraction from MPEG-1,2 bit-stream and the watershed algerian The algorithm extracts objects using user's assistance in the intra frame and tracks then in the following inter frames. If we have an unsatisfactory result for a fast moving object the user can intervene to connect the segmentation. The proposed algorithm consist of two steps, which are intra frame object extracting processing and inter frame tracking processing. Object extracting process is the step in which user extracts a semantic object directly by using the block classification and watersheds. Object tracking process is the step of the following the object in the subsequent frames. It is based on the boundary fitting method using motion vector, object-mask and modified watersheds. Experimental results show that the proposed method can achieve a fast conversion from the MPEG-1,2 bit-stream to the object-based MPEG-4 input.

Movement Search in Video Stream Using Shape Sequence (동영상에서 모양 시퀀스를 이용한 동작 검색 방법)

  • Choi, Min-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.4
    • /
    • pp.492-501
    • /
    • 2009
  • Information on movement of objects in videos can be used as an important part in categorizing and separating the contents of a scene. This paper is proposing a shape-based movement-matching algorithm to effectively find the movement of an object in video streams. Information on object movement is extracted from the object boundaries from the input video frames becoming expressed in continuous 2D shape information while individual 2D shape information is converted into a lD shape feature using the shape descriptor. Object movement in video can be found as simply as searching for a word in a text without a separate movement segmentation process using the sequence of the shape descriptor listed according to order. The performance comparison results with the MPEG-7 shape variation descriptor showed that the proposed method can effectively express the movement information of the object and can be applied to movement search and analysis applications.

  • PDF

Appearance-based Object Recognition Using Higher Order Local Auto Correlation Feature Information (고차 국소 자동 상관 특징 정보를 이용한 외관 기반 객체 인식)

  • Kang, Myung-A
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1439-1446
    • /
    • 2011
  • This paper describes the algorithm that lowers the dimension, maintains the object recognition and significantly reduces the eigenspace configuration time by combining the higher correlation feature information and Principle Component Analysis. Since the suggested method doesn't require a lot of computation than the method using existing geometric information or stereo image, the fact that it is very suitable for building the real-time system has been proved through the experiment. In addition, since the existing point to point method which is a simple distance calculation has many errors, in this paper to improve recognition rate the recognition error could be reduced by using several successive input images as a unit of recognition with K-Nearest Neighbor which is the improved Class to Class method.

Face Recognition using Extended Center-Symmetric Pattern and 2D-PCA (Extended Center-Symmetric Pattern과 2D-PCA를 이용한 얼굴인식)

  • Lee, Hyeon Gu;Kim, Dong Ju
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.2
    • /
    • pp.111-119
    • /
    • 2013
  • Face recognition has recently become one of the most popular research areas in the fields of computer vision, machine learning, and pattern recognition because it spans numerous applications, such as access control, surveillance, security, credit-card verification, and criminal identification. In this paper, we propose a simple descriptor called an ECSP(Extended Center-Symmetric Pattern) for illumination-robust face recognition. The ECSP operator encodes the texture information of a local face region by emphasizing diagonal components of a previous CS-LBP(Center-Symmetric Local Binary Pattern). Here, the diagonal components are emphasized because facial textures along the diagonal direction contain much more information than those of other directions. The facial texture information of the ECSP operator is then used as the input image of an image covariance-based feature extraction algorithm such as 2D-PCA(Two-Dimensional Principal Component Analysis). Performance evaluation of the proposed approach was carried out using various binary pattern operators and recognition algorithms on the Yale B database. The experimental results demonstrated that the proposed approach achieved better recognition accuracy than other approaches, and we confirmed that the proposed approach is effective against illumination variation.