• Title/Summary/Keyword: Information input algorithm

Search Result 2,444, Processing Time 0.03 seconds

Development of Nuclear Power Plant Instrumentation Signal Faults Identification Algorithm (원전 계측 신호 오류 식별 알고리즘 개발)

  • Kim, SeungGeun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.6
    • /
    • pp.1-13
    • /
    • 2020
  • In this paper, the author proposed a nuclear power plant (NPP) instrumentation signal faults identification algorithm. A variational autoencoder (VAE)-based model is trained by using only normal dataset as same as existing anomaly detection method, and trained model predicts which signal within the entire signal set is anomalous. Classification of anomalous signals is performed based on the reconstruction error for each kind of signal and partial derivatives of reconstruction error with respect to the specific part of an input. Simulation was conducted to acquire the data for the experiments. Through the experiments, it was identified that the proposed signal fault identification method can specify the anomalous signals within acceptable range of error.

Energy Efficient and Low-Cost Server Architecture for Hadoop Storage Appliance

  • Choi, Do Young;Oh, Jung Hwan;Kim, Ji Kwang;Lee, Seung Eun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4648-4663
    • /
    • 2020
  • This paper proposes the Lempel-Ziv 4(LZ4) compression accelerator optimized for scale-out servers in data centers. In order to reduce CPU loads caused by compression, we propose an accelerator solution and implement the accelerator on an Field Programmable Gate Array(FPGA) as heterogeneous computing. The LZ4 compression hardware accelerator is a fully pipelined architecture and applies 16 dictionaries to enhance the parallelism for high throughput compressor. Our hardware accelerator is based on the 20-stage pipeline and dictionary architecture, highly customized to LZ4 compression algorithm and parallel hardware implementation. Proposing dictionary architecture allows achieving high throughput by comparing input sequences in multiple dictionaries simultaneously compared to a single dictionary. The experimental results provide the high throughput with intensively optimized in the FPGA. Additionally, we compare our implementation to CPU implementation results of LZ4 to provide insights on FPGA-based data centers. The proposed accelerator achieves the compression throughput of 639MB/s with fine parallelism to be deployed into scale-out servers. This approach enables the low power Intel Atom processor to realize the Hadoop storage along with the compression accelerator.

Text Summarization on Large-scale Vietnamese Datasets

  • Ti-Hon, Nguyen;Thanh-Nghi, Do
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.4
    • /
    • pp.309-316
    • /
    • 2022
  • This investigation is aimed at automatic text summarization on large-scale Vietnamese datasets. Vietnamese articles were collected from newspaper websites and plain text was extracted to build the dataset, that included 1,101,101 documents. Next, a new single-document extractive text summarization model was proposed to evaluate this dataset. In this summary model, the k-means algorithm is used to cluster the sentences of the input document using different text representations, such as BoW (bag-of-words), TF-IDF (term frequency - inverse document frequency), Word2Vec (Word-to-vector), Glove, and FastText. The summary algorithm then uses the trained k-means model to rank the candidate sentences and create a summary with the highest-ranked sentences. The empirical results of the F1-score achieved 51.91% ROUGE-1, 18.77% ROUGE-2 and 29.72% ROUGE-L, compared to 52.33% ROUGE-1, 16.17% ROUGE-2, and 33.09% ROUGE-L performed using a competitive abstractive model. The advantage of the proposed model is that it can perform well with O(n,k,p) = O(n(k+2/p)) + O(nlog2n) + O(np) + O(nk2) + O(k) time complexity.

Development of Target Vehicle State Estimation Algorithm Using V2V Communication (V2V 통신을 이용한 상대 차량 상태 추정 알고리즘 개발)

  • Kwon, Woojin;Jo, Ara;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.2
    • /
    • pp.70-74
    • /
    • 2022
  • This paper describes the development of a target vehicle state estimation algorithm using vehicle-to-vehicle (V2V) communication. Perceiving the state of the target vehicle has great importance for successful autonomous driving and has been studied using various sensors and methods for many years. V2V communication has advantage of not being constrained by surrounding circumstances relative to other sensors. In this paper, we adopt the V2V signal for estimating the target vehicle state. Since applying only the V2V signal is improper by its low frequency and latency, the signal is used as additional measured data to improve the estimation accuracy. We estimate the target vehicle state using Extended Kalman filter (EKF); a point mass model was utilized in process update to predict the state of next step. The process update is followed by measurement update when ego vehicle receives V2V information. The proposed study evaluated state estimation by comparing input V2V information in an experiment where the ego vehicle follows the target vehicle behind it.

CSI-based human activity recognition via lightweight compact convolutional transformers

  • Fahd Saad Abuhoureyah;Yan Chiew Wong;Malik Hasan Al-Taweel;Nihad Ibrahim Abdullah
    • Advances in Computational Design
    • /
    • v.9 no.3
    • /
    • pp.187-211
    • /
    • 2024
  • WiFi sensing integration enables non-intrusive and is utilized in applications like Human Activity Recognition (HAR) to leverage Multiple Input Multiple Output (MIMO) systems and Channel State Information (CSI) data for accurate signal monitoring in different fields, such as smart environments. The complexity of extracting relevant features from CSI data poses computational bottlenecks, hindering real-time recognition and limiting deployment on resource-constrained devices. The existing methods sacrifice accuracy for computational efficiency or vice versa, compromising the reliability of activity recognition within pervasive environments. The lightweight Compact Convolutional Transformer (CCT) algorithm proposed in this work offers a solution by streamlining the process of leveraging CSI data for activity recognition in such complex data. By leveraging the strengths of both CNNs and transformer models, the CCT algorithm achieves state-of-the-art accuracy on various benchmarks, emphasizing its excellence over traditional algorithms. The model matches convolutional networks' computational efficiency with transformers' modeling capabilities. The evaluation process of the proposed model utilizes self-collected dataset for CSI WiFi signals with few daily activities. The results demonstrate the improvement achieved by using CCT in real-time activity recognition, as well as the ability to operate on devices and networks with limited computational resources.

Adaptive Compensation Method Using the Prediction Algorithm for the Doppler Frequency Shift in the LEO Mobile Satellite Communication System

  • You, Moon-Hee;Lee, Seong-Pal;Han, Young-Yearl
    • ETRI Journal
    • /
    • v.22 no.4
    • /
    • pp.32-39
    • /
    • 2000
  • In low earth orbit (LEO) satellite communication systems, more severe phase distortion due to Doppler shift is frequently detected in the received signal than in cases of geostationary earth orbit (GEO) satellite systems or terrestrial mobile systems. Therefore, an estimation of Doppler shift would be one of the most important factors to enhance performance of LEO satellite communication system. In this paper, a new adaptive Doppler compensation scheme using location information of a user terminal and satellite, as well as a weighting factor for the reduction of prediction error is proposed. The prediction performance of the proposed scheme is simulated in terms of the prediction accuracy and the cumulative density function of the prediction error, with considering the offset variation range of the initial input parameters in LEO satellite system. The simulation results showed that the proposed adaptive compensation algorithm has the better performance accuracy than Ali's method. From the simulation results, it is concluded the adaptive compensation algorithm is the most applicable method that can be applied to LEO satellite systems of a range of altitude between 1,000 km and 2,000 km for the general error tolerance level, M = 250 Hz.

  • PDF

An Efficient Dead Pixel Detection Algorithm and VLSI Implementation (효율적인 불량화소 검출 알고리듬 및 하드웨어 구현)

  • An Jee-Hoon;Lee Won-Jae;Kim Jae-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.9 s.351
    • /
    • pp.38-43
    • /
    • 2006
  • In this paper, we propose the efficient dead pixel detection algorithm for CMOS image sensors and its hardware architecture. The CMOS image sensors as image input devices are becoming popular due to the demand for miniaturized, low-power and cost-effective imaging systems. However, the presence of the dead pixels degrade the image quality. To detect the dead pixels, the proposed algorithm is composed of scan, trace and detection step. The experimental results showed that it could detect 99.99% of dead pixels. It was designed in a hardware description language and total logic gate count is 3.2k using 0.25 CMOS standard cell library.

Multi-Level Segmentation of Infrared Images with Region of Interest Extraction

  • Yeom, Seokwon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.246-253
    • /
    • 2016
  • Infrared (IR) imaging has been researched for various applications such as surveillance. IR radiation has the capability to detect thermal characteristics of objects under low-light conditions. However, automatic segmentation for finding the object of interest would be challenging since the IR detector often provides the low spatial and contrast resolution image without color and texture information. Another hindrance is that the image can be degraded by noise and clutters. This paper proposes multi-level segmentation for extracting regions of interest (ROIs) and objects of interest (OOIs) in the IR scene. Each level of the multi-level segmentation is composed of a k-means clustering algorithm, an expectation-maximization (EM) algorithm, and a decision process. The k-means clustering initializes the parameters of the Gaussian mixture model (GMM), and the EM algorithm estimates those parameters iteratively. During the multi-level segmentation, the area extracted at one level becomes the input to the next level segmentation. Thus, the segmentation is consecutively performed narrowing the area to be processed. The foreground objects are individually extracted from the final ROI windows. In the experiments, the effectiveness of the proposed method is demonstrated using several IR images, in which human subjects are captured at a long distance. The average probability of error is shown to be lower than that obtained from other conventional methods such as Gonzalez, Otsu, k-means, and EM methods.

A visual inspection algorithm for detecting infinitesimal surface defects by using dominant frequency map (지배주파수도를 이용한 미소 표면 결함 추출을 위한 영상 처리 알고리듬)

  • Kim, Kim, Sang-Won;Kweon, Kweon, In-So
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.1
    • /
    • pp.26-34
    • /
    • 1996
  • One of the challenging tasks in visual inspection using CCD camera is to identify surface defects in an image with complex textured backgeound. In microscopic view, the surface of real objects shows regular or random textured patterns. In this paper, we present a visual inspection algorithm to extract abnormal surface defects in an image with textured background. The algorithm uses the space and frequency information at the same time by introducing the Dominant Frequency Map(DFM) which can describe the frequency characteristics of every small local region of an input image. We demonstrate the feasibility and effectiveness of the method through a series of real experiments for a 14" TV CRT mold. The method successfully identifies a variety of infinitesimal defects, whose size is larger than $50\mu\textrm{m}$, of the mold. The experimental results show that the DFM based method is less sensitive to the environmental changes, such as illumination and defocusing, than conventional vision techniques.ques.

  • PDF

A One-Gap Parsing with Extended PLR(1) Grammars (확장된 PLR(1) 문법에 대한 단일 틈 파싱)

  • Lee, Gyung-Ok
    • Journal of KIISE
    • /
    • v.42 no.3
    • /
    • pp.361-366
    • /
    • 2015
  • Gap parsing is an algorithm for parsing incomplete input strings which include some gaps. Gap parsing is different from conventional parsing, and as known results, one-gap parsing algorithms for arbitrary context-free grammar and LL(1) grammar have $O(n^3)$ and $O(n^2)$ time complexity, respectively. This paper presents a one-gap parsing algorithm for extended PLR(1) grammars. Extended PLR(1) grammars are the class of grammars smaller than LR(1) but much larger than LL(1). The one-gap parsing algorithm of the grammar class is shown to have the time complexity of $O(n^2)$, which is equal to the complexity of one-gap parsing algorithms for LL(1) grammars.