• Title/Summary/Keyword: Information input algorithm

Search Result 2,444, Processing Time 0.024 seconds

The Presentation of Semi-Random Interleaver Algorithm for Turbo Code (터보코드에 적용을 위한 세미 랜덤 인터리버 알고리즘의 제안)

  • Hong, Sung-Won;Park, Jin-Soo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.2
    • /
    • pp.536-541
    • /
    • 2000
  • Turbo code has excellent decoding performance but had limitations for real time communications because of the system complexity and time delay in decoding procedure. To overcome this problem, a new SRI(Semi-Random Interleaver) algorithm which realize the reduction of the interleaver size is proposed for reducing the time delay during the decoding prodedure. SRI compose the interleaver 0.5 size from the input data sequence. In writing the interleaver, data is recorded by row such as block interleaver. But, in reading, data is read by randomly and the text data is located by the just address simultaneously. Therefore, the processing time of with the preexisting method such as block, helical random interleaver.

  • PDF

Automatic Extraction of Road Network using GDPA (Gradient Direction Profile Algorithm) for Transportation Geographic Analysis

  • Lee, Ki-won;Yu, Young-Chul
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.775-779
    • /
    • 2002
  • Currently, high-resolution satellite imagery such as KOMPSAT and IKONOS has been tentatively utilized to various types of urban engineering problems such as transportation planning, site planning, and utility management. This approach aims at software development and followed applications of remotely sensed imagery to transportation geographic analysis. At first, GDPA (Gradient Direction Profile Algorithm) and main modules in it are overviewed, and newly implemented results under MS visual programming environment are presented with main user interface, input imagery processing, and internal processing steps. Using this software, road network are automatically generated. Furthermore, this road network is used to transportation geographic analysis such as gamma index and road pattern estimation. While, this result, being produced to do-facto format of ESRI-shapefile, is used to several types of road layers to urban/transportation planning problems. In this study, road network using KOMPSAT EOC imagery and IKONOS imagery are directly compared to multiple road layers with NGI digital map with geo-coordinates, as ground truth; furthermore, accuracy evaluation is also carried out through method of computation of commission and omission error at some target area. Conclusively, the results processed in this study is thought to be one of useful cases for further researches and local government application regarding transportation geographic analysis using remotely sensed data sets.

  • PDF

The fuzzy transmission rate control method for the fairness bandwidty allocation of ABR servce in ATM networks (AYM망에서 ABR 서비스의 공정 대역폭 할당을 위한 퍼지 전송률 제어 기법)

  • 유재택;김용우;김영한;이광형
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.5
    • /
    • pp.939-948
    • /
    • 1997
  • In this paper, we propose the new rate-based transmission rates control algorithm that allocates the fair band-width for ABR service in ATM network. In the traditional ABR service, bandwidth is allocated with constant rate increment or decrement, but in the proposed algorithm, it is allocated fairly to the connected calls by the fuzzy inference of the available bandwidth. The fuzzy inference uses buffer state and the buffer variant rate as the input variables, and uses the total transmission rate as a output variable. This inference a bandwidth is fairly distributed over all ABR calls in service. By simmulation, we showed that the proposed method improved 0.17% in link effectiveness when RIF, RDF is 1/4, 38.6% when RIF, RDF 1/16, and 82.4% when RIF, RDF 1/32 than that of the traditional EFPCA.

  • PDF

Resource Allocation in Multi-User MIMO-OFDM Systems with Double-objective Optimization

  • Chen, Yuqing;Li, Xiaoyan;Sun, Xixia;Su, Pan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2063-2081
    • /
    • 2018
  • A resource allocation algorithm is proposed in this paper to simultaneously minimize the total system power consumption and maximize the system throughput for the downlink of multi-user multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) systems. With the Lagrange dual decomposition method, we transform the original problem to its convex dual problem and prove that the duality gap between the two problems is zero, which means the optimal solution of the original problem can be obtained by solving its dual problem. Then, we use convex optimization method to solve the dual problem and utilize bisection method to obtain the optimal dual variable. The numerical results show that the proposed algorithm is superior to traditional single-objective optimization method in both the system throughput and the system energy consumption.

Hand Gesture Recognition using Optical Flow Field Segmentation and Boundary Complexity Comparison based on Hidden Markov Models

  • Park, Sang-Yun;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.4
    • /
    • pp.504-516
    • /
    • 2011
  • In this paper, we will present a method to detect human hand and recognize hand gesture. For detecting the hand region, we use the feature of human skin color and hand feature (with boundary complexity) to detect the hand region from the input image; and use algorithm of optical flow to track the hand movement. Hand gesture recognition is composed of two parts: 1. Posture recognition and 2. Motion recognition, for describing the hand posture feature, we employ the Fourier descriptor method because it's rotation invariant. And we employ PCA method to extract the feature among gesture frames sequences. The HMM method will finally be used to recognize these feature to make a final decision of a hand gesture. Through the experiment, we can see that our proposed method can achieve 99% recognition rate at environment with simple background and no face region together, and reduce to 89.5% at the environment with complex background and with face region. These results can illustrate that the proposed algorithm can be applied as a production.

Test Set Generation for Pairwise Testing Using Genetic Algorithms

  • Sabharwal, Sangeeta;Aggarwal, Manuj
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1089-1102
    • /
    • 2017
  • In software systems, it has been observed that a fault is often caused by an interaction between a small number of input parameters. Even for moderately sized software systems, exhaustive testing is practically impossible to achieve. This is either due to time or cost constraints. Combinatorial (t-way) testing provides a technique to select a subset of exhaustive test cases covering all of the t-way interactions, without much of a loss to the fault detection capability. In this paper, an approach is proposed to generate 2-way (pairwise) test sets using genetic algorithms. The performance of the algorithm is improved by creating an initial solution using the overlap coefficient (a similarity matrix). Two mutation strategies have also been modified to improve their efficiency. Furthermore, the mutation operator is improved by using a combination of three mutation strategies. A comparative survey of the techniques to generate t-way test sets using genetic algorithms was also conducted. It has been shown experimentally that the proposed approach generates faster results by achieving higher percentage coverage in a fewer number of generations. Additionally, the size of the mixed covering arrays was reduced in one of the six benchmark problems examined.

Robust Object Detection Algorithm Using Spatial Gradient Information (SG 정보를 이용한 강인한 물체 추출 알고리즘)

  • Joo, Young-Hoon;Kim, Se-Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.422-428
    • /
    • 2008
  • In this paper, we propose the robust object detection algorithm with spatial gradient information. To do this, first, we eliminate error values that appear due to complex environment and various illumination change by using prior methods based on hue and intensity from the input video and background. Visible shadows are eliminated from the foreground by using an RGB color model and a qualified RGB color model. And unnecessary values are eliminated by using the HSI color model. The background is removed completely from the foreground leaving a silhouette to be restored using spatial gradient and HSI color model. Finally, we validate the applicability of the proposed method using various indoor and outdoor conditions in a complex environments.

A VR-based pseudo weight algorithm using machine learning

  • Park, Sung-Jun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.53-59
    • /
    • 2021
  • In this paper, we propose a system that can perform dumbbell exercise by recognizing the weight of dumbbells without wearing and device. With the development of virtual reality technnology, many studies are being conducted to simulate the pysical feedback of the real world in the virtual world. Accurate motion recognition is important to the elderly for rehabilitation exercises. They cannot lift heavy dumbbells. For rehabilitation exercise, correct body movement according to an appropriate weight must be performed. We use a machine learning algorithm for the accuracy of motion data input in real time. As an experiment, we was test three types of bicep, double, shoulder exercise and verified accuracy of exercise. In addition, we made a virtual gym game to actually apply these exercise in virtual reality.

Boosting the Face Recognition Performance of Ensemble Based LDA for Pose, Non-uniform Illuminations, and Low-Resolution Images

  • Haq, Mahmood Ul;Shahzad, Aamir;Mahmood, Zahid;Shah, Ayaz Ali;Muhammad, Nazeer;Akram, Tallha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3144-3164
    • /
    • 2019
  • Face recognition systems have several potential applications, such as security and biometric access control. Ongoing research is focused to develop a robust face recognition algorithm that can mimic the human vision system. Face pose, non-uniform illuminations, and low-resolution are main factors that influence the performance of face recognition algorithms. This paper proposes a novel method to handle the aforementioned aspects. Proposed face recognition algorithm initially uses 68 points to locate a face in the input image and later partially uses the PCA to extract mean image. Meanwhile, the AdaBoost and the LDA are used to extract face features. In final stage, classic nearest centre classifier is used for face classification. Proposed method outperforms recent state-of-the-art face recognition algorithms by producing high recognition rate and yields much lower error rate for a very challenging situation, such as when only frontal ($0^{\circ}$) face sample is available in gallery and seven poses ($0^{\circ}$, ${\pm}30^{\circ}$, ${\pm}35^{\circ}$, and ${\pm}45^{\circ}$) as a probe on the LFW and the CMU Multi-PIE databases.

Pilot Sequence Assignment for Spatially Correlated Massive MIMO Circumstances

  • Li, Pengxiang;Gao, Yuehong;Li, Zhidu;Yang, Dacheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.237-253
    • /
    • 2019
  • For massive multiple-input multiple-output (MIMO) circumstances with time division duplex (TDD) protocol, pilot contamination becomes one of main system performance bottlenecks. This paper proposes an uplink pilot sequence assignment to alleviate this problem for spatially correlated massive MIMO circumstances. Firstly, a single-cell TDD massive MIMO model with multiple terminals in the cell is established. Then a spatial correlation between two channel response vectors is established by the large-scale fading variables and the angle of arrival (AOA) span with an infinite number of base station (BS) antennas. With this spatially correlated channel model, the expression for the achievable system capacity is derived. To optimize the achievable system capacity, a problem regarding uplink pilot assignment is proposed. In view of the exponential complexity of the exhaustive search approach, a pilot assignment algorithm corresponding to the distinct channel AOA intervals is proposed to approach the optimization solution. In addition, simulation results prove that the main pilot assignment algorithm in this paper can obtain a noticeable performance gain with limited BS antennas.