• Title/Summary/Keyword: Information input algorithm

Search Result 2,444, Processing Time 0.029 seconds

A Study on Static Situation Awareness System with the Aid of Optimized Polynomial Radial Basis Function Neural Networks (최적화된 pRBF 뉴럴 네트워크에 의한 정적 상황 인지 시스템에 관한 연구)

  • Oh, Sung-Kwun;Na, Hyun-Suk;Kim, Wook-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2352-2360
    • /
    • 2011
  • In this paper, we introduce a comprehensive design methodology of Radial Basis Function Neural Networks (RBFNN) that is based on mechanism of clustering and optimization algorithm. We can divide some clusters based on similarity of input dataset by using clustering algorithm. As a result, the number of clusters is equal to the number of nodes in the hidden layer. Moreover, the centers of each cluster are used into the centers of each receptive field in the hidden layer. In this study, we have applied Fuzzy-C Means(FCM) and K-Means(KM) clustering algorithm, respectively and compared between them. The weight connections of model are expanded into the type of polynomial functions such as linear and quadratic. In this reason, the output of model consists of relation between input and output. In order to get the optimal structure and better performance, Particle Swarm Optimization(PSO) is used. We can obtain optimized parameters such as both the number of clusters and the polynomial order of weights connection through structural optimization as well as the widths of receptive fields through parametric optimization. To evaluate the performance of proposed model, NXT equipment offered by National Instrument(NI) is exploited. The situation awareness system-related intelligent model was built up by the experimental dataset of distance information measured between object and diverse sensor such as sound sensor, light sensor, and ultrasonic sensor of NXT equipment.

Synthesizing Imperative Programs from Examples (예제로부터 명령형 프로그램을 합성하는 방법)

  • So, Sunbeom;Choi, Tae-Hyoung;Jung, Jun;Oh, Hakjoo
    • Journal of KIISE
    • /
    • v.44 no.9
    • /
    • pp.986-991
    • /
    • 2017
  • In this paper, we present a method for synthesizing imperative programs from input-output examples. Given (1) a set of input-output examples, (2) an incomplete program, and (3) variables and integer constants to be used, the synthesizer outputs a complete program that satisfies all of the given examples. The basic synthesis algorithm enumerates all possible candidate programs until the solution program is found (enumerative search). However, it is too slow for practical use due to the huge search space. To accelerate the search speed, our approach uses code optimization and avoids unnecessary search for the programs that are syntactically different but semantically equivalent. We have evaluated our synthesis algorithm on 20 introductory programming problems, and the results show that our method improves the speed of the basic algorithm by 10x on average.

An Adaptive Histogram Redistribution Algorithm Based on Area Ratio of Sub-Histogram for Contrast Enhancement (명암비 향상을 위한 서브-히스토그램 면적비 기반의 적응형 히스토그램 재분배 알고리즘)

  • Park, Dong-Min;Choi, Myung-Ruyl
    • The KIPS Transactions:PartB
    • /
    • v.16B no.4
    • /
    • pp.263-270
    • /
    • 2009
  • Histogram Equalization (HE) is a very popular technique for enhancing the contrast of an image. HE stretches the dynamic range of an image using the cumulative distribution function of a given input image, therefore improving its contrast. However, HE has a well-known problem : when HE is applied for the contrast enhancement, there is a significant change in brightness. To resolve this problem, we propose An Adaptive Contrast Enhancement Algorithm using Subhistogram Area-Ratioed Histogram Redistribution, a new method that helps reduce excessive contrast enhancement. This proposed algorithm redistributes the dynamic range of an input image using its mean luminance value and the ratio of sub-histogram area. Experimental results show that by this redistribution, the significant change in brightness is reduced effectively and the output image is able to preserve the naturalness of an original image even if it has a poor histogram distribution.

Design of RF Digital Spectrum Analyser for Mobile Communication (이동 통신용 RF 디지털 스펙트럼 분석기 설계)

  • Woo, Kwang-Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.6
    • /
    • pp.29-34
    • /
    • 2007
  • It is important to analyse the frequency spectrum for the measurement of modulated signal, distortion, and noise. The frequency spectrum analysis is performed by the execution of Radix-2 DIT DFT i.e. FFT algorithm. The discrete input signal converted by A/D converter from the input signal in time domain is mathematically transformed to the frequency spectrum by FFT algorithm. In this study, we design the digital spectrum analyser by the hardware based on the TMS320F2812 DSP and AD9244 converter, and by the software based on the C28x S/W modules. We can timely analyse the frequency spectrum in mobile communication system by the digital frequency analyser based on the high performance DSP and S/W modules. This real-time analysing capability is the important performance in the internet-based mobile communication server system.

Design and Implementation of Multiple View Image Synthesis Scheme based on RAM Disk for Real-Time 3D Browsing System (실시간 3D 브라우징 시스템을 위한 램 디스크 기반의 다시점 영상 합성 기법의 설계 및 구현)

  • Sim, Chun-Bo;Lim, Eun-Cheon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.5
    • /
    • pp.13-23
    • /
    • 2009
  • One of the main purpose of multiple-view image processing technology is support realistic 3D image to device user by using multiple viewpoint display devices and compressed data restoration devices. This paper proposes a multiple view image synthesis scheme based on RAM disk which makes possible to browse 3D images generated by applying effective composing method to real time input stereo images. The proposed scheme first converts input images to binary image. We applies edge detection algorithm such as Sobel algorithm and Prewiit algorithm to find edges used to evaluate disparities from images of 4 multi-cameras. In addition, we make use of time interval between hardware trigger and software trigger to solve the synchronization problem which has stated ambiguously in related studies. We use a unique identifier on each snapshot of images for distributed environment. With respect of performance results, the proposed scheme takes 0.67 sec in each binary array. to transfer entire images which contains left and right side with disparity information for high quality 3D image browsing. We conclude that the proposed scheme is suitable for real time 3D applications.

The Spatial Electric Load Forecasting Algorithm using the Multiple Regression Analysis Method (다중회귀분석법을 이용한 지역전력수요예측 알고리즘)

  • Nam, Bong-Woo;Song, Kyung-Bin;Kim, Kyu-Ho;Cha, Jun-Min
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.2
    • /
    • pp.63-70
    • /
    • 2008
  • This paper resents the spatial electric load forecasting algorithm using the multiple regression analysis method which is enhanced from the algorithm of the DISPLAN(Distribution Information System PLAN). In order to improve the accuracy of the spatial electrical load forecasting, input variables are selected for GRDP(Gross Regional Domestic Product), the local population and the electrical load sales of the past year. Tests are performed to analyze the accuracy of the proposed method for Gyeong-San City, Gu-Mi City, Gim-Cheon City and Yeong-Ju City of North Gyeongsang Province. Test results show that the overall accuracy of the proposed method is improved the percentage error 11.2[%] over 12[%] of the DISPLAN. Specially, the accuracy is enhanced a lot in the case of high variability of input variables. The proposed method will be used to forecast local electric loads for the optimal investment of distribution systems.

Iso-density Surface Reconstruction using Hierarchical Shrink-Wrapping Algorithm (계층적 Shrink-Wrapping 알고리즘을 이용한 등밀도면의 재구성)

  • Choi, Young-Kyu;Park, Eun-Jin
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.6
    • /
    • pp.511-520
    • /
    • 2009
  • In this paper, we present a new iso-density surface reconstruction scheme based on a hierarchy on the input volume data and the output mesh data. From the input volume data, we construct a hierarchy of volumes, called a volume pyramid, based on a 3D dilation filter. After constructing the volume pyramid, we extract a coarse base mesh from the coarsest resolution of the pyramid with the Cell-boundary representation scheme. We iteratively fit this mesh to the iso-points extracted from the volume data under O(3)-adjacency constraint. For the surface fitting, the shrinking process and the smoothing process are adopted as in the SWIS (Shrink-wrapped isosurface) algorithm[6], and we subdivide the mesh to be able to reconstruct fine detail of the isosurface. The advantage of our method is that it generates a mesh which can be utilized by several multiresolution algorithms such as compression and progressive transmission.

Nonlinear Inference Using Fuzzy Cluster (퍼지 클러스터를 이용한 비선형 추론)

  • Park, Keon-Jung;Lee, Dong-Yoon
    • Journal of Digital Convergence
    • /
    • v.14 no.1
    • /
    • pp.203-209
    • /
    • 2016
  • In this paper, we introduce a fuzzy inference systems for nonlinear inference using fuzzy cluster. Typically, the generation of fuzzy rules for nonlinear inference causes the problem that the number of fuzzy rules increases exponentially if the input vectors increase. To handle this problem, the fuzzy rules of fuzzy model are designed by dividing the input vector space in the scatter form using fuzzy clustering algorithm which expresses fuzzy cluster. From this method, complex nonlinear process can be modeled. The premise part of the fuzzy rules is determined by means of FCM clustering algorithm with fuzzy clusters. The consequence part of the fuzzy rules have four kinds of polynomial functions and the coefficient parameters of each rule are estimated by using the standard least-squares method. And we use the data widely used in nonlinear process for the performance and the nonlinear characteristics of the nonlinear process. Experimental results show that the non-linear inference is possible.

Fast Fuzzy Inference Algorithm for Fuzzy System constructed with Triangular Membership Functions (삼각형 소속함수로 구성된 퍼지시스템의 고속 퍼지추론 알고리즘)

  • Yoo, Byung-Kook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.7-13
    • /
    • 2002
  • Almost applications using fuzzy theory are based on the fuzzy inference. However fuzzy inference needs much time in calculation process for the fuzzy system with many input variables or many fuzzy labels defined on each variable. Inference time is dependent on the number of arithmetic Product in computation Process. Especially, the inference time is a primary constraint to fuzzy control applications using microprocessor or PC-based controller. In this paper, a simple fast fuzzy inference algorithm(FFIA), without loss of information, was proposed to reduce the inference time based on the fuzzy system with triangular membership functions in antecedent part of fuzzy rule. The proposed algorithm was induced by using partition of input state space and simple geometrical analysis. By using this scheme, we can take the same effect of the fuzzy rule reduction.

Design and Implementation of the Security System for the Moving Object Detection (이동물체 검출을 위한 보안 시스템의 설계 및 구현)

  • 안용학;안일영
    • Convergence Security Journal
    • /
    • v.2 no.1
    • /
    • pp.77-86
    • /
    • 2002
  • In this paper, we propose a segmentation algorithm that can reliably separate moving objects from noisy background in the image sequence received from a camera at the fixed position. Image segmentation is one of the most difficult process in image processing and an adoption in the change of environment must be considered for the increase in the accuracy of the image. The proposed algorithm consists of four process : generation of the difference image between the input image and the reference image, removes the background noise using the background nois modeling to a difference image histogram, then selects the candidate initial region using local maxima to the difference image, and gradually expanding the connected regions, region by region, using the shape information. The test results show that the proposed algorithm can detect moving objects like intruders very effectively in the noisy environment.

  • PDF