• Title/Summary/Keyword: Information based Industry

Search Result 5,130, Processing Time 0.033 seconds

Corporate Default Prediction Model Using Deep Learning Time Series Algorithm, RNN and LSTM (딥러닝 시계열 알고리즘 적용한 기업부도예측모형 유용성 검증)

  • Cha, Sungjae;Kang, Jungseok
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.1-32
    • /
    • 2018
  • In addition to stakeholders including managers, employees, creditors, and investors of bankrupt companies, corporate defaults have a ripple effect on the local and national economy. Before the Asian financial crisis, the Korean government only analyzed SMEs and tried to improve the forecasting power of a default prediction model, rather than developing various corporate default models. As a result, even large corporations called 'chaebol enterprises' become bankrupt. Even after that, the analysis of past corporate defaults has been focused on specific variables, and when the government restructured immediately after the global financial crisis, they only focused on certain main variables such as 'debt ratio'. A multifaceted study of corporate default prediction models is essential to ensure diverse interests, to avoid situations like the 'Lehman Brothers Case' of the global financial crisis, to avoid total collapse in a single moment. The key variables used in corporate defaults vary over time. This is confirmed by Beaver (1967, 1968) and Altman's (1968) analysis that Deakins'(1972) study shows that the major factors affecting corporate failure have changed. In Grice's (2001) study, the importance of predictive variables was also found through Zmijewski's (1984) and Ohlson's (1980) models. However, the studies that have been carried out in the past use static models. Most of them do not consider the changes that occur in the course of time. Therefore, in order to construct consistent prediction models, it is necessary to compensate the time-dependent bias by means of a time series analysis algorithm reflecting dynamic change. Based on the global financial crisis, which has had a significant impact on Korea, this study is conducted using 10 years of annual corporate data from 2000 to 2009. Data are divided into training data, validation data, and test data respectively, and are divided into 7, 2, and 1 years respectively. In order to construct a consistent bankruptcy model in the flow of time change, we first train a time series deep learning algorithm model using the data before the financial crisis (2000~2006). The parameter tuning of the existing model and the deep learning time series algorithm is conducted with validation data including the financial crisis period (2007~2008). As a result, we construct a model that shows similar pattern to the results of the learning data and shows excellent prediction power. After that, each bankruptcy prediction model is restructured by integrating the learning data and validation data again (2000 ~ 2008), applying the optimal parameters as in the previous validation. Finally, each corporate default prediction model is evaluated and compared using test data (2009) based on the trained models over nine years. Then, the usefulness of the corporate default prediction model based on the deep learning time series algorithm is proved. In addition, by adding the Lasso regression analysis to the existing methods (multiple discriminant analysis, logit model) which select the variables, it is proved that the deep learning time series algorithm model based on the three bundles of variables is useful for robust corporate default prediction. The definition of bankruptcy used is the same as that of Lee (2015). Independent variables include financial information such as financial ratios used in previous studies. Multivariate discriminant analysis, logit model, and Lasso regression model are used to select the optimal variable group. The influence of the Multivariate discriminant analysis model proposed by Altman (1968), the Logit model proposed by Ohlson (1980), the non-time series machine learning algorithms, and the deep learning time series algorithms are compared. In the case of corporate data, there are limitations of 'nonlinear variables', 'multi-collinearity' of variables, and 'lack of data'. While the logit model is nonlinear, the Lasso regression model solves the multi-collinearity problem, and the deep learning time series algorithm using the variable data generation method complements the lack of data. Big Data Technology, a leading technology in the future, is moving from simple human analysis, to automated AI analysis, and finally towards future intertwined AI applications. Although the study of the corporate default prediction model using the time series algorithm is still in its early stages, deep learning algorithm is much faster than regression analysis at corporate default prediction modeling. Also, it is more effective on prediction power. Through the Fourth Industrial Revolution, the current government and other overseas governments are working hard to integrate the system in everyday life of their nation and society. Yet the field of deep learning time series research for the financial industry is still insufficient. This is an initial study on deep learning time series algorithm analysis of corporate defaults. Therefore it is hoped that it will be used as a comparative analysis data for non-specialists who start a study combining financial data and deep learning time series algorithm.

An Exploratory Study on Marketing of Financial Services Companies in Korea (한국 금융회사 마케팅 현황에 대한 탐색 연구)

  • Chun, Sung Yong
    • Asia Marketing Journal
    • /
    • v.12 no.2
    • /
    • pp.111-133
    • /
    • 2010
  • Marketing financial services used to be easier. Today, the competition in financial services is fierce. Not only has the competition become more intense, financial services have also changed structurally. In an environment with various customer needs and severe competitions, the marketing in financial services industry is getting more difficult and more important than before. However, there are still not enough studies on financial services marketing in Korea whereas lots of research papers have been published frequently in some international journals. The purpose of this paper is (1)to review the literature on financial services marketing, (2)to investigate current marketing activities based on in-depth interview with financial marketing managers in Korea, and (3)to suggest some implications for future research on the financial services marketing. Financial products are not consumer products. In fact, they are not products at all in the way product marketing is usually described. Nor are they altogether like services. The financial industry operates in a unique way, and its marketing tasks are correspondingly complex. However, the literature review shows that there has been a lack of basic studies which dealt with inherent characteristics of financial services marketing compared to the research on marketing in other industries. Many studies in domestic marketing journals have so far focused only on the general customer behaviors and the special issues in some financial industries. However, for more effective financial services marketing, we have to answer following questions. Is there any difference between financial service marketing and consumer packaged goods marketing? What are the differences between the financial services marketing and other services marketing such as education and health services? Are there different ways of marketing among banks, securities firms, insurance firms, and credit card companies? In other words, we need more detailed research as well as basic studies about the financial services marketing. For example, we need concrete definitions of financial services marketing, bank marketing, securities firm marketing, and etc. It is also required to compare the characteristics of each marketing within the financial services industry. The products sold in each market have different characteristics such as duration and degree of risk-taking. It means that there are sub-categories in financial services marketing. We have to consider them in the future research on the financial services marketing. It is also necessary to study customer decision making process in the financial markets. There have been little research on how customers search and process information, compare alternatives, make final decision, and repeat their choices. Because financial services have some unique characteristics, we need different understandings in the customer behaviors compared to the behaviors in other service markets. And also considering the rapid growth in financial markets and upcoming severe competition between domestic and global financial companies, it is time to start more systematic and detailed research on financial services marketing in Korea. In the second part of this paper, I analyzed the results of in-depth interview with 20 marketing managers of financial services companies in Korea. As a result, I found that the role of marketing departments in Korean financial companies are mainly focused on the short-term activities such as sales support, promotion, and CRM data analysis although the size and history of marketing departments to some extent show a sign of maturity. Most companies established official marketing departments before 2001. Average number of employees in a marketing department is about 58. However, marketing managers in eight companies(40% of the sample) still think that the purpose of marketing is only to support and manage general sales activities. It shows that some companies have sales-oriented concept rather than marketing-oriented concept. I also found three key words which marketing managers think importantly in financial services markets. They are (1)Trust in customer relationship, (2)Brand differentiation, and (3)Rapid response to customer needs. 50% of the sample support that "Trust" is the most important key word in the financial services marketing. It is interesting that 80% of banks and securities companies think that "Trust" is the most important thing, whereas managers in credit card companies consider "Rapid response to customer needs" as the most important key word in their market. In addition, there are different problems recognition of marketing managers depending on the types of financial industries they belong to. For example, in the case of banks and insurance companies, marketing managers consider "a lack of communication with other departments" as the most serious problem. On the other hand, in the case of securities firms, "a lack of utilization of customer data" is the most serious problem. These results imply that there are different important factors for the customer satisfaction depending on the types of financial industries, and managers have to consider them when marketing financial products in more effective ways. For example, It will be necessary for marketing managers to study different important factors which affect customer satisfaction, repeat purchase, degree of risk-taking, and possibility of cross-selling according to the types of financial industries. I also suggested six hypothetical propositions for the future research.

  • PDF

Analysis of media trends related to spent nuclear fuel treatment technology using text mining techniques (텍스트마이닝 기법을 활용한 사용후핵연료 건식처리기술 관련 언론 동향 분석)

  • Jeong, Ji-Song;Kim, Ho-Dong
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.33-54
    • /
    • 2021
  • With the fourth industrial revolution and the arrival of the New Normal era due to Corona, the importance of Non-contact technologies such as artificial intelligence and big data research has been increasing. Convergent research is being conducted in earnest to keep up with these research trends, but not many studies have been conducted in the area of nuclear research using artificial intelligence and big data-related technologies such as natural language processing and text mining analysis. This study was conducted to confirm the applicability of data science analysis techniques to the field of nuclear research. Furthermore, the study of identifying trends in nuclear spent fuel recognition is critical in terms of being able to determine directions to nuclear industry policies and respond in advance to changes in industrial policies. For those reasons, this study conducted a media trend analysis of pyroprocessing, a spent nuclear fuel treatment technology. We objectively analyze changes in media perception of spent nuclear fuel dry treatment techniques by applying text mining analysis techniques. Text data specializing in Naver's web news articles, including the keywords "Pyroprocessing" and "Sodium Cooled Reactor," were collected through Python code to identify changes in perception over time. The analysis period was set from 2007 to 2020, when the first article was published, and detailed and multi-layered analysis of text data was carried out through analysis methods such as word cloud writing based on frequency analysis, TF-IDF and degree centrality calculation. Analysis of the frequency of the keyword showed that there was a change in media perception of spent nuclear fuel dry treatment technology in the mid-2010s, which was influenced by the Gyeongju earthquake in 2016 and the implementation of the new government's energy conversion policy in 2017. Therefore, trend analysis was conducted based on the corresponding time period, and word frequency analysis, TF-IDF, degree centrality values, and semantic network graphs were derived. Studies show that before the 2010s, media perception of spent nuclear fuel dry treatment technology was diplomatic and positive. However, over time, the frequency of keywords such as "safety", "reexamination", "disposal", and "disassembly" has increased, indicating that the sustainability of spent nuclear fuel dry treatment technology is being seriously considered. It was confirmed that social awareness also changed as spent nuclear fuel dry treatment technology, which was recognized as a political and diplomatic technology, became ambiguous due to changes in domestic policy. This means that domestic policy changes such as nuclear power policy have a greater impact on media perceptions than issues of "spent nuclear fuel processing technology" itself. This seems to be because nuclear policy is a socially more discussed and public-friendly topic than spent nuclear fuel. Therefore, in order to improve social awareness of spent nuclear fuel processing technology, it would be necessary to provide sufficient information about this, and linking it to nuclear policy issues would also be a good idea. In addition, the study highlighted the importance of social science research in nuclear power. It is necessary to apply the social sciences sector widely to the nuclear engineering sector, and considering national policy changes, we could confirm that the nuclear industry would be sustainable. However, this study has limitations that it has applied big data analysis methods only to detailed research areas such as "Pyroprocessing," a spent nuclear fuel dry processing technology. Furthermore, there was no clear basis for the cause of the change in social perception, and only news articles were analyzed to determine social perception. Considering future comments, it is expected that more reliable results will be produced and efficiently used in the field of nuclear policy research if a media trend analysis study on nuclear power is conducted. Recently, the development of uncontact-related technologies such as artificial intelligence and big data research is accelerating in the wake of the recent arrival of the New Normal era caused by corona. Convergence research is being conducted in earnest in various research fields to follow these research trends, but not many studies have been conducted in the nuclear field with artificial intelligence and big data-related technologies such as natural language processing and text mining analysis. The academic significance of this study is that it was possible to confirm the applicability of data science analysis technology in the field of nuclear research. Furthermore, due to the impact of current government energy policies such as nuclear power plant reductions, re-evaluation of spent fuel treatment technology research is undertaken, and key keyword analysis in the field can contribute to future research orientation. It is important to consider the views of others outside, not just the safety technology and engineering integrity of nuclear power, and further reconsider whether it is appropriate to discuss nuclear engineering technology internally. In addition, if multidisciplinary research on nuclear power is carried out, reasonable alternatives can be prepared to maintain the nuclear industry.

Development of New Variables Affecting Movie Success and Prediction of Weekly Box Office Using Them Based on Machine Learning (영화 흥행에 영향을 미치는 새로운 변수 개발과 이를 이용한 머신러닝 기반의 주간 박스오피스 예측)

  • Song, Junga;Choi, Keunho;Kim, Gunwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.67-83
    • /
    • 2018
  • The Korean film industry with significant increase every year exceeded the number of cumulative audiences of 200 million people in 2013 finally. However, starting from 2015 the Korean film industry entered a period of low growth and experienced a negative growth after all in 2016. To overcome such difficulty, stakeholders like production company, distribution company, multiplex have attempted to maximize the market returns using strategies of predicting change of market and of responding to such market change immediately. Since a film is classified as one of experiential products, it is not easy to predict a box office record and the initial number of audiences before the film is released. And also, the number of audiences fluctuates with a variety of factors after the film is released. So, the production company and distribution company try to be guaranteed the number of screens at the opining time of a newly released by multiplex chains. However, the multiplex chains tend to open the screening schedule during only a week and then determine the number of screening of the forthcoming week based on the box office record and the evaluation of audiences. Many previous researches have conducted to deal with the prediction of box office records of films. In the early stage, the researches attempted to identify factors affecting the box office record. And nowadays, many studies have tried to apply various analytic techniques to the factors identified previously in order to improve the accuracy of prediction and to explain the effect of each factor instead of identifying new factors affecting the box office record. However, most of previous researches have limitations in that they used the total number of audiences from the opening to the end as a target variable, and this makes it difficult to predict and respond to the demand of market which changes dynamically. Therefore, the purpose of this study is to predict the weekly number of audiences of a newly released film so that the stakeholder can flexibly and elastically respond to the change of the number of audiences in the film. To that end, we considered the factors used in the previous studies affecting box office and developed new factors not used in previous studies such as the order of opening of movies, dynamics of sales. Along with the comprehensive factors, we used the machine learning method such as Random Forest, Multi Layer Perception, Support Vector Machine, and Naive Bays, to predict the number of cumulative visitors from the first week after a film release to the third week. At the point of the first and the second week, we predicted the cumulative number of visitors of the forthcoming week for a released film. And at the point of the third week, we predict the total number of visitors of the film. In addition, we predicted the total number of cumulative visitors also at the point of the both first week and second week using the same factors. As a result, we found the accuracy of predicting the number of visitors at the forthcoming week was higher than that of predicting the total number of them in all of three weeks, and also the accuracy of the Random Forest was the highest among the machine learning methods we used. This study has implications in that this study 1) considered various factors comprehensively which affect the box office record and merely addressed by other previous researches such as the weekly rating of audiences after release, the weekly rank of the film after release, and the weekly sales share after release, and 2) tried to predict and respond to the demand of market which changes dynamically by suggesting models which predicts the weekly number of audiences of newly released films so that the stakeholders can flexibly and elastically respond to the change of the number of audiences in the film.

Investigating Dynamic Mutation Process of Issues Using Unstructured Text Analysis (비정형 텍스트 분석을 활용한 이슈의 동적 변이과정 고찰)

  • Lim, Myungsu;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.1-18
    • /
    • 2016
  • Owing to the extensive use of Web media and the development of the IT industry, a large amount of data has been generated, shared, and stored. Nowadays, various types of unstructured data such as image, sound, video, and text are distributed through Web media. Therefore, many attempts have been made in recent years to discover new value through an analysis of these unstructured data. Among these types of unstructured data, text is recognized as the most representative method for users to express and share their opinions on the Web. In this sense, demand for obtaining new insights through text analysis is steadily increasing. Accordingly, text mining is increasingly being used for different purposes in various fields. In particular, issue tracking is being widely studied not only in the academic world but also in industries because it can be used to extract various issues from text such as news, (SocialNetworkServices) to analyze the trends of these issues. Conventionally, issue tracking is used to identify major issues sustained over a long period of time through topic modeling and to analyze the detailed distribution of documents involved in each issue. However, because conventional issue tracking assumes that the content composing each issue does not change throughout the entire tracking period, it cannot represent the dynamic mutation process of detailed issues that can be created, merged, divided, and deleted between these periods. Moreover, because only keywords that appear consistently throughout the entire period can be derived as issue keywords, concrete issue keywords such as "nuclear test" and "separated families" may be concealed by more general issue keywords such as "North Korea" in an analysis over a long period of time. This implies that many meaningful but short-lived issues cannot be discovered by conventional issue tracking. Note that detailed keywords are preferable to general keywords because the former can be clues for providing actionable strategies. To overcome these limitations, we performed an independent analysis on the documents of each detailed period. We generated an issue flow diagram based on the similarity of each issue between two consecutive periods. The issue transition pattern among categories was analyzed by using the category information of each document. In this study, we then applied the proposed methodology to a real case of 53,739 news articles. We derived an issue flow diagram from the articles. We then proposed the following useful application scenarios for the issue flow diagram presented in the experiment section. First, we can identify an issue that actively appears during a certain period and promptly disappears in the next period. Second, the preceding and following issues of a particular issue can be easily discovered from the issue flow diagram. This implies that our methodology can be used to discover the association between inter-period issues. Finally, an interesting pattern of one-way and two-way transitions was discovered by analyzing the transition patterns of issues through category analysis. Thus, we discovered that a pair of mutually similar categories induces two-way transitions. In contrast, one-way transitions can be recognized as an indicator that issues in a certain category tend to be influenced by other issues in another category. For practical application of the proposed methodology, high-quality word and stop word dictionaries need to be constructed. In addition, not only the number of documents but also additional meta-information such as the read counts, written time, and comments of documents should be analyzed. A rigorous performance evaluation or validation of the proposed methodology should be performed in future works.

Aviation Safety Regulation and ICAO's Response to Emerging Issues (항공안전규제와 새로운 이슈에 대한 ICAO의 대응)

  • Shin, Dong-Chun
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.30 no.1
    • /
    • pp.207-244
    • /
    • 2015
  • Aviation safety is the stage in which the risk of harm to persons or of property damage is reduced to, and maintained at or below, an acceptable level through a continuing process of hazard identification and risk management. Many accidents and incidents have been taking place since 2014, while there had been relatively safer skies before 2014. International civil aviation community has been exerting great efforts to deal with these emerging issues, thus enhancing and ensuring safety throughout the world over the years. The Preamble of the Chicago Convention emphasizes safety and order of international air transport, and so many Articles in the Convention are related to the safety. Furthermore, most of the Annexes to the Convention are International Standards and Recommended Practices pertaining to the safety. In particular, Annex 19, which was promulgated in Nov. 2013, dealing with safety management system. ICAO, as law-making body, has Air Navigation Commission, Council, Assembly to deliberate and make decisions regarding safety issues. It is also implementing USOAP and USAP to supervise safety functions of member States. After MH 370 disappeared in 2014, ICAO is developing Global Tracking System whereby there should be no loophole in tracking the location of aircraft anywhere in world with the information provided by many stakeholders concerned. MH 17 accident drove ICAO to install web-based repository where information relating to the operation in conflict zones is provided and shared. In addition, ICAO has been initiating various solutions to emerging issues such as ebola outbreak and operation under extreme meteorological conditions. Considering the necessity of protection and sharing of safety data and information to enhance safety level, ICAO is now suggesting enhanced provisions to do so, and getting feedback from member States. It has been observed that ICAO has been approaching issues towards problem-solving from four different dimensions. First regarding time, it analyses past experiences and best practices, and make solutions in short, mid and long terms. Second, from space perspective, ICAO covers States, region and the world as a whole. Third, regarding stakeholders it consults with and hear from as many entities as it could, including airlines, airports, community, consumers, manufacturers, air traffic control centers, air navigation service providers, industry and insurers. Last not but least, in terms of regulatory changes, it identifies best practices, guidance materials and provisions which could become standards and recommended practices.

A Study on Practices and Improvement Factors of Financial Disclosures in early stages of IFRS Adoption - An Integrative Approach of Korean Cases: Embracing Views of Reporting Entities and Users of Financial Statements (IFRS 공시 실태 개선방안에 대한 소고 - 보고기업, 정보이용자 요인을 고려한 통합적 접근 -)

  • Kim, Hee-Suk
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.7 no.2
    • /
    • pp.113-127
    • /
    • 2012
  • From the end of 1st quarter of 2012, Korean mandatory firms had started releasing financial reports conforming to the K-IFRS(Korean adopted International Financial Reporting Standards). Major characteristics of IFRS, such as 'principles based' features, consolidated reporting, 'fair value' measurement, increased pressure for non-financial disclosures have resulted in brief and various disclosure practices regarding the main body of each statements and vast amount of note description requirements. Meanwhile, a host of previous studies on IFRS disclosures have incorporated regulatory and/or 'compete information' perspectives, mainly focusing on suggesting further enforcement of strengthened requirements and providing guidelines for specific treatments. Thus, as an extension of prior findings and suggestions this study had explored to conduct an integrative approach embracing views of the reporting entities and the users of financial information. In spite of all the state-driven efforts for faithful representation and comparability of corporate financial reports, an overhaul of disclosure practices of fiscal year 2010 and 2011 had revealed numerous cases of insufficiency and discordance in terms of mandatory norms and market expectations. As to the causes of such shortcomings, this study identified several factors from the corporate side and the users of the information; some inherent aspects of IFRS, industry/corporate-specific context, expenditures related to internalizing IFRS system, reduced time frame for presentation. lack of clarity and details to meet the quality of information - understandability, comparability etc. - commonly requested by the user group. In order to improve current disclosure practices, dual approach had been suggested; Firstly, to encourage and facilitate implementation, (1) further segmentation and differentiation of mandates among companies, (2) redefining the scope and depth of note descriptions, (3) diversification and coordination of reporting periods, (4) providing support for equipping disclosure systems and granting incentives for best practices had been discussed. Secondly, as for the hard measures, (5) regularizing active involvement of corporate and user group delegations in the establishment and amendment process of K-IFRS (6) enforcing detailed and standardized disclosure on reporting entities had been recommended.

  • PDF

Foodservice Characteristics and Satisfaction of the Elderly with the Welfare Facilities in the Northern Gyeonggi-do Area (경기 북부지역 복지시설 이용노인의 급식 현황 및 만족도 조사)

  • Kim, Young Soon;Park, Young Shim;Choi, Byung Bum
    • The Korean Journal of Food And Nutrition
    • /
    • v.27 no.5
    • /
    • pp.872-880
    • /
    • 2014
  • This study was conducted to assess the characteristics and satisfactions related with facility foodservice for the elderly in the Northern Gyeonggi-do area (Republic of Korea). To accomplish this, a survey was conducted to investigate the general characteristics of the elderly, health information, and satisfaction with the foodservice of a welfare facility in the area. The main sources of health information for both the male and female elderly included 'health professionals' (49.0, 45.7%) and the 'mass media' (34.4, 33.5%), and they were revealed to trust the information from 'health professionals' (65.6, 59.5%), more so than the 'mass media' (19.8, 20.8%). The principal diseases of the elderly were 'hypertension' (27.1%), 'diabetes' (21.9%), 'palsy' (19.8%) in males, and 'hypertension' (32.4%), 'diabetes' (24.9%), 'arthritis' (15.0%) in females. Most male and female elderly indicated the main reasons for skipping a meal to be 'no appetite' (37.5, 53.8%) and 'indigestion'(19.1, 17.3%), respectively. The facility foodservice was used by the male elderly for the reasons of 'irritating to cook' (28.1%), 'to meet a friend' (26.0%), and 'economic' (14.6%), while the female elderly used it for the reasons of 'economic' (25.4%), 'to meet a friend' (23.1%), and 'irritating to cook' (23.1%). The reasons for satisfaction with the facility were subject to 'meal supply' (28.0, 37.2%), 'social exchanges' (20.0, 22.3%), and 'good facilities' (18.7, 18.2%). Regarding the officers and nurses of the facility, 13.3% and 9.3% of males and 8.3% and 12.4% of females indicated satisfaction, respectively. The satisfaction with foodservice influenced the welfare facilities, and providing a successful environment for foodservice requires strengthening of the education of facilities employees to become friendlier. Based on these results, greater efforts should be made to provide meaningful information regarding the facility foodservice for the elderly related to the silver service industry in the Northern Gyeonggi-do area as soon as possible.

An Alternative Approach for Setting Equilibrium Prices of Sericultural Products (잠사류의 균형 가격모색)

  • 이질현
    • Journal of Sericultural and Entomological Science
    • /
    • no.12
    • /
    • pp.47-50
    • /
    • 1970
  • There are many factors affecting the development of sericultural industry in Korea. The setting of a rational pricing system for sericultural products is one of important activities of the Korean Government to improve the incentives to producers. The determination o: the prices for many years were based on the production costs including a certain level of profits. Some of cost items are in conflict both in cocoon producers and silk-reeling industries. Government officials have to evaluate these conflicting problems and estimate the consequences of their decisions. In this situation the final decision often became political decisions. This analysis is aimed at providing an alternative method of setting the prices of sericultural products. The criteria of the equilibrium employed in this analysis are based on economic principle which equilibrium condition is determined by the relationships between the marginal productivity of input factors and factor prices. In order to obtain the related information Cobb-Douglas'functions were fitted using KIST computer and data were obtained mostly from the Bank of Korea and the Ministry of Agriculture and Forestru, An important assumption is that "Opportunity Costs" of factors input in both cocoon production and silk-Peeling industries are same, The major finding s obtained are as followings. 1) The sum of coefficient of production elastisity in silk-reeling industries is greater than one. Silk-reeling industries are operating under the situation of increasing return to scale and it is, therefore, expected to develop the industries as the capital-intensive large scale. 2) The cocoon producing farmers are under the situations of the decreasing return to scale and it is expected to continue their cocoon farming as the labor-intensive small scale, assuming the present level of production technology. As the development of commercial farming, the resources input in cocoon production will be shifted to the production for higher profitable crops, 3) The price elastisity of production is higher in cocoon production than in silk-reeling industries. It is expected that the price changing effects on domestic production will be resulted from cocoon producers. 4) Based on analysis results of marginal productivities and the opportunity costs of resources, cocoon price for meeting equilibrium price condition is to be increased by 8-16 percent or standard price level of silk increased by 6-8 percent. There were the possibilities of over evaluation on opportunity cost of resources input in silk-reeling industries, or income transfered from the farmers to the industries. It is recommended that the prices for meeting equilibrium price conditions are to be determined by 72 percent for cocoon and 28 percent for silk-reeling costs, based on standard level of the exporting prices.

  • PDF

The development of resources for the application of 2020 Dietary Reference Intakes for Koreans (2020 한국인 영양소 섭취기준 활용 자료 개발)

  • Hwang, Ji-Yun;Kim, Yangha;Lee, Haeng Shin;Park, EunJu;Kim, Jeongseon;Shin, Sangah;Kim, Ki Nam;Bae, Yun Jung;Kim, Kirang;Woo, Taejung;Yoon, Mi Ock;Lee, Myoungsook
    • Journal of Nutrition and Health
    • /
    • v.55 no.1
    • /
    • pp.21-35
    • /
    • 2022
  • The recommended meal composition allows the general people to organize meals using the number of intakes of foods from each of six food groups (grains, meat·fish·eggs·beans, vegetables, fruits, milk·dairy products and oils·sugars) to meet Dietary Reference Intakes for Koreans (KDRIs) without calculating complex nutritional values. Through an integrated analysis of data from the 6th to 7th Korean National Health and Nutrition Examination Surveys (2013-2018), representative foods for each food group were selected, and the amounts of representative foods per person were derived based on energy. Based on the EER by age and gender from the KDRIs, a total of 12 kinds of diets were suggested by differentiating meal compositions by age (aged 1-2, 3-5, 6-11, 12-18, 19-64, 65-74 and ≥ 75 years) and gender. The 2020 Food Balance Wheel included the 6th food group of oils and sugars to raise public awareness and avoid confusion in the practical utilization of the model by industries or individuals in reducing the consistent increasing intakes of oils and sugars. To promote the everyday use of the Food Balance Wheel and recommended meal compositions among the general public, the poster of the Food Balance Wheel was created in five languages (Korean, English, Japanese, Vietnamese and Chinese) along with card news. A survey was conducted to provide a basis for categorizing nutritional problems by life cycles and developing customized web-based messages to the public. Based on survey results two types of card news were produced for the general public and youth. Additionally, the educational program was developed through a series of processes, such as prioritization of educational topics, setting educational goals for each stage, creation of a detailed educational system chart and teaching-learning plans for the development of educational materials and media.