• Title/Summary/Keyword: Information Systems Security Strategy

Search Result 170, Processing Time 0.023 seconds

Analysis of U.S. Supply Chain Security Management System (미국 공급망 보안 관리 체계 분석)

  • Son, Hyo-hyun;Kim, Kwang-jun;Lee, Man-hee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.5
    • /
    • pp.1089-1097
    • /
    • 2019
  • An era of smart manufacturing is coming through the rapid development of information and communication technology. As a result, many companies have begun to utilize a variety of hardware and software for the efficient business of the manufacturing process. At this time, the hardware and software used are supplied through manufacturing and distribution processes. These supply processes are exposed to a variety of security threats. As the recent cases of supply chain attacks have increased, foreign countries are establishing supply chain management systems and managing supply chain risks. In Korea, on the other hand, there was research on supply chain risk management in some fields. In this paper, we emphasizes the necessity of supply chain risk management through supply chain attack cases. In addition, we analyze trends of foreign supply chain management system and explains the necessity of domestic supply chain security strategy.

Bayesian Rules Based Optimal Defense Strategies for Clustered WSNs

  • Zhou, Weiwei;Yu, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5819-5840
    • /
    • 2018
  • Considering the topology of hierarchical tree structure, each cluster in WSNs is faced with various attacks launched by malicious nodes, which include network eavesdropping, channel interference and data tampering. The existing intrusion detection algorithm does not take into consideration the resource constraints of cluster heads and sensor nodes. Due to application requirements, sensor nodes in WSNs are deployed with approximately uncorrelated security weights. In our study, a novel and versatile intrusion detection system (IDS) for the optimal defense strategy is primarily introduced. Given the flexibility that wireless communication provides, it is unreasonable to expect malicious nodes will demonstrate a fixed behavior over time. Instead, malicious nodes can dynamically update the attack strategy in response to the IDS in each game stage. Thus, a multi-stage intrusion detection game (MIDG) based on Bayesian rules is proposed. In order to formulate the solution of MIDG, an in-depth analysis on the Bayesian equilibrium is performed iteratively. Depending on the MIDG theoretical analysis, the optimal behaviors of rational attackers and defenders are derived and calculated accurately. The numerical experimental results validate the effectiveness and robustness of the proposed scheme.

A Study on Personal Information Protection amid the COVID-19 Pandemic

  • Kim, Min Woo;Kim, Il Hwan;Kim, Jaehyoun;Ha, Oh Jeong;Chang, Jinsook;Park, Sangdon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.4062-4080
    • /
    • 2022
  • COVID-19, a highly infectious disease, has affected the globe tremendously since its outbreak during late 2019 in Wuhan, China. In order to respond to the pandemic, governments around the world introduced a variety of public health measures including contact-tracing, a method to identify individuals who may have come into contact with a confirmed COVID-19 patient, which usually leads to quarantine of certain individuals. Like many other governments, the South Korean health authorities adopted public health measures using latest data technologies. Key data technology-based quarantine measures include:(1) Electronic Entry Log; (2) Self-check App; and (3) COVID-19 Wristband, and heavily relied on individual's personal information for contact-tracing and self-isolation. In fact, during the early stages of the pandemic, South Korea's strategy proved to be highly effective in containing the spread of coronavirus while other countries suffered significantly from the surge of COVID-19 patients. However, while the South Korean COVID-19 policy was hailed as a success, it must be noted that the government achieved this by collecting and processing a wide range of personal information. In collecting and processing personal information, the data minimum principle - one of the widely recognized common data principles between different data protection laws - should be applied. Public health measures have no exceptions, and it is even more crucial when government activities are involved. In this study, we provide an analysis of how the governments around the world reacted to the COVID-19 pandemic and evaluate whether the South Korean government's digital quarantine measures ensured the protection of its citizen's right to privacy.

Design and Implementation of Road Construction Risk Management System based on LPWA and Bluetooth Beacon

  • Lee, Seung-Soo;Kim, Yun-cheol;Jee, Sung-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.145-151
    • /
    • 2018
  • While commercialization of IoT technologies in the safety management sector is being promoted in terms of industrial safety of large indoor businesses, implementing a system for risk management of small outdoor work sites with frequent site movements is not actively implemented. In this paper, we propose an efficient dynamic workload balancing strategy which combined low-power, wide-bandwidth (LPWA) communication and low-power Bluetooth (BLE) communication technologies to support customized risk management alarm systems for each individual (driver/operator/manager). This study was designed to enable long-term low-power collection and transmission of traffic information in outdoor environment, as well as to implement an integrated real-time safety management system that notifies a whole field worker who does not carry a separate smart device in advance. Performance assessments of the system, including risk alerts to drivers and workers via Bluetooth communication, the speed at which critical text messages are received, and the operation of warning/lighting lamps are all well suited to field application.

QSDB: An Encrypted Database Model for Privacy-Preserving in Cloud Computing

  • Liu, Guoxiu;Yang, Geng;Wang, Haiwei;Dai, Hua;Zhou, Qiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3375-3400
    • /
    • 2018
  • With the advent of database-as-a-service (DAAS) and cloud computing, more and more data owners are motivated to outsource their data to cloud database in consideration of convenience and cost. However, it has become a challenging work to provide security to database as service model in cloud computing, because adversaries may try to gain access to sensitive data, and curious or malicious administrators may capture and leak data. In order to realize privacy preservation, sensitive data should be encrypted before outsourcing. In this paper, we present a secure and practical system over encrypted cloud data, called QSDB (queryable and secure database), which simultaneously supports SQL query operations. The proposed system can store and process the floating point numbers without compromising the security of data. To balance tradeoff between data privacy protection and query processing efficiency, QSDB utilizes three different encryption models to encrypt data. Our strategy is to process as much queries as possible at the cloud server. Encryption of queries and decryption of encrypted queries results are performed at client. Experiments on the real-world data sets were conducted to demonstrate the efficiency and practicality of the proposed system.

A Knowledge Workers Acquisition Problem under Expanding and Volatile Demand: An Application of the Korean Information Security Service Industry

  • Park, Hyun-Min;Lim, Dae-Eun;Kim, Tae-Sung;Kim, Kil-Hwan;Kim, Soo-Hyun
    • Management Science and Financial Engineering
    • /
    • v.17 no.1
    • /
    • pp.45-63
    • /
    • 2011
  • The aim of this paper is to consider the process of supplying trained workers with knowledge and skills for upcoming business opportunities and the process of training apprentices to be prepared to meet future demands in an IT service firm. As the demand for new workers fluctuates, a firm should employ a buffer workforce such as apprentices or interns. However, as a result of rapid business development, the capacity of the buffer may be exceeded, thus requiring the company to recruit skilled workers from outside the firm. Therefore, it is important for a firm to map out a strategy for manpower planning so as to fulfill the demands of new business and minimize the operation costs related to training apprentices and recruiting experienced workers. First, this paper analyzes the supply and demand of workers for the IT service in a knowledge-intensive field. It then presents optimal human resource planning strategies via the familiar method of stochastic process. Also, we illustrate that our model is applied to the human resource planning of an information security service firm in South Korea.

Honeypot game-theoretical model for defending against APT attacks with limited resources in cyber-physical systems

  • Tian, Wen;Ji, Xiao-Peng;Liu, Weiwei;Zhai, Jiangtao;Liu, Guangjie;Dai, Yuewei;Huang, Shuhua
    • ETRI Journal
    • /
    • v.41 no.5
    • /
    • pp.585-598
    • /
    • 2019
  • A cyber-physical system (CPS) is a new mechanism controlled or monitored by computer algorithms that intertwine physical and software components. Advanced persistent threats (APTs) represent stealthy, powerful, and well-funded attacks against CPSs; they integrate physical processes and have recently become an active research area. Existing offensive and defensive processes for APTs in CPSs are usually modeled by incomplete information game theory. However, honeypots, which are effective security vulnerability defense mechanisms, have not been widely adopted or modeled for defense against APT attacks in CPSs. In this study, a honeypot game-theoretical model considering both low- and high-interaction modes is used to investigate the offensive and defensive interactions, so that defensive strategies against APTs can be optimized. In this model, human analysis and honeypot allocation costs are introduced as limited resources. We prove the existence of Bayesian Nash equilibrium strategies and obtain the optimal defensive strategy under limited resources. Finally, numerical simulations demonstrate that the proposed method is effective in obtaining the optimal defensive effect.

Polymorphic Path Transferring for Secure Flow Delivery

  • Zhang, Rongbo;Li, Xin;Zhan, Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.2805-2826
    • /
    • 2021
  • In most cases, the routing policy of networks shows a preference for a static one-to-one mapping of communication pairs to routing paths, which offers adversaries a great advantage to conduct thorough reconnaissance and organize an effective attack in a stress-free manner. With the evolution of network intelligence, some flexible and adaptive routing policies have already proposed to intensify the network defender to turn the situation. Routing mutation is an effective strategy that can invalidate the unvarying nature of routing information that attackers have collected from exploiting the static configuration of the network. However, three constraints execute press on routing mutation deployment in practical: insufficient route mutation space, expensive control costs, and incompatibility. To enhance the availability of route mutation, we propose an OpenFlow-based route mutation technique called Polymorphic Path Transferring (PPT), which adopts a physical and virtual path segment mixed construction technique to enlarge the routing path space for elevating the security of communication. Based on the Markov Decision Process, with considering flows distribution in the network, the PPT adopts an evolution routing path scheduling algorithm with a segment path update strategy, which relieves the press on the overhead of control and incompatibility. Our analysis demonstrates that PPT can secure data delivery in the worst network environment while countering sophisticated attacks in an evasion-free manner (e.g., advanced persistent threat). Case study and experiment results show its effectiveness in proactively defending against targeted attacks and its advantage compared with previous route mutation methods.

The Relationship between Labor Market Flexibility and Outcome Variables and Its Moderating Effect on Union Power (노동시장의 유연성과 결과변수와의 관계 및 노조 힘의 조절효과)

  • Bae, Seung-Hyun;Park, Se-Yul
    • Management & Information Systems Review
    • /
    • v.30 no.4
    • /
    • pp.475-509
    • /
    • 2011
  • Taking 195 Korean businesses and sorting them out according to the unit types, this study looks into how flexibility strategy in labor market, which consists of numerical flexibility and functional flexibility, takes effect on the organization's outcome variable, which in turn consists of productivity, labor-management cooperation, and job security. In addition, the present study analyzes the role of labor union's moderating effect on the relationship among labor market flexibility, labor-management cooperation, and job security. It is found out as a result that numerical flexibility has no meaningful relation with productivity, labor-management cooperation, and job security, while functional flexibility has a considerably positive relation with them. This result confirms the importance of functional flexibility of business strategy in labor market. The West has continuously insisted the importance of functional flexibility, pointing out problems of numerical flexibility. On the other hand, considering that this study has confirmed functional flexibility's meaningful relation, while it has not found out numerical flexibility's negative relation, it is necessary to study further on the relationship between these two kinds of flexibility. The result of analysis on the role of union power's moderating effect confirms only the union power's interaction effect in the relation between numerical flexibility and labor-management cooperation. The possibility of union's opportunistic behavior can be detected in this result.

  • PDF

Cyber Kill Chain-Based Taxonomy of Advanced Persistent Threat Actors: Analogy of Tactics, Techniques, and Procedures

  • Bahrami, Pooneh Nikkhah;Dehghantanha, Ali;Dargahi, Tooska;Parizi, Reza M.;Choo, Kim-Kwang Raymond;Javadi, Hamid H.S.
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.865-889
    • /
    • 2019
  • The need for cyber resilience is increasingly important in our technology-dependent society where computing devices and data have been, and will continue to be, the target of cyber-attackers, particularly advanced persistent threat (APT) and nation-state/sponsored actors. APT and nation-state/sponsored actors tend to be more sophisticated, having access to significantly more resources and time to facilitate their attacks, which in most cases are not financially driven (unlike typical cyber-criminals). For example, such threat actors often utilize a broad range of attack vectors, cyber and/or physical, and constantly evolve their attack tactics. Thus, having up-to-date and detailed information of APT's tactics, techniques, and procedures (TTPs) facilitates the design of effective defense strategies as the focus of this paper. Specifically, we posit the importance of taxonomies in categorizing cyber-attacks. Note, however, that existing information about APT attack campaigns is fragmented across practitioner, government (including intelligence/classified), and academic publications, and existing taxonomies generally have a narrow scope (e.g., to a limited number of APT campaigns). Therefore, in this paper, we leverage the Cyber Kill Chain (CKC) model to "decompose" any complex attack and identify the relevant characteristics of such attacks. We then comprehensively analyze more than 40 APT campaigns disclosed before 2018 to build our taxonomy. Such taxonomy can facilitate incident response and cyber threat hunting by aiding in understanding of the potential attacks to organizations as well as which attacks may surface. In addition, the taxonomy can allow national security and intelligence agencies and businesses to share their analysis of ongoing, sensitive APT campaigns without the need to disclose detailed information about the campaigns. It can also notify future security policies and mitigation strategy formulation.