• Title/Summary/Keyword: Information Suppression

Search Result 635, Processing Time 0.033 seconds

Matrix Decomposition for Low Computational Complexity in Orthogonal Precoding of N-continuous Schemes for Sidelobe Suppression of OFDM Signals

  • Kawasaki, Hikaru;Matsui, Takahiro;Ohta, Masaya;Yamashita, Katsumi
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.2
    • /
    • pp.117-123
    • /
    • 2017
  • N-continuous orthogonal frequency division multiplexing (OFDM) is a precoding method for sidelobe suppression of OFDM signals and seamlessly connects OFDM symbols up to the high-order derivative for sidelobe suppression, which is suitable for suppressing out-of-band radiation. However, it severely degrades the error rate as it increases the continuous derivative order. Two schemes for orthogonal precoding of N-continuous OFDM have been proposed to achieve an ideal error rate while maintaining sidelobe suppression performance; however, the large size of the precoder matrices in both schemes causes very high computational complexity for precoding and decoding. This paper proposes matrix decomposition of precoder matrices with a large size in the orthogonal precoding schemes in order to reduce computational complexity. Numerical experiments show that the proposed method can drastically reduce computational complexity without any performance degradation.

Reducing Feedback Overhead in Opportunistic Scheduling of Wireless Networks Exploiting Overhearing

  • Baek, Seung-Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.593-609
    • /
    • 2012
  • We propose a scheme to reduce the overhead associated with channel state information (CSI) feedback required for opportunistic scheduling in wireless access networks. We study the case where CSI is partially overheard by mobiles and thus one can suppress transmitting CSI reports for time varying channels of inferior quality. We model the mechanism of feedback suppression as a Bayesian network, and show that the problem of minimizing the average feedback overhead is NP-hard. To deal with hardness of the problem we identify a class of feedback suppression structures which allow efficient computation of the cost. Leveraging such structures we propose an algorithm which not only captures the essence of seemingly complex overhearing relations among mobiles, but also provides a simple estimate of the cost incurred by a suppression structure. Simulation results are provided to demonstrate the improvements offered by the proposed scheme, e.g., a savings of 63-83% depending on the network size.

A Novel Hybrid Active Power Filter with a High-Voltage Rank

  • Li, Yan;Li, Gang
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.719-728
    • /
    • 2013
  • A novel hybrid active power filter (NHAPF) that can be adopted in high-voltage systems is proposed in this paper. The topological structure and filtering principle of the compensating system is provided and analyzed, respectively. Different controlling strategies are also presented to select the suitable strategy for the compensation system. Based on the selected strategy, the harmonic suppression function is used to analyze the influence of system parameters on the compensating system with MATLAB. Moreover, parameters in the injection branch are designed and analyzed. The performance of the proposed NHAPF in harmonic suppression and reactive power compensation is simulated with PSim. Thereafter, the overall control method is proposed. Simulation analysis and real experiments show that the proposed NHAPF exhibits good harmonic suppression and reactive power compensation. The proposed compensated system is based on the three-phase four-switch inverter, which is inexpensive, and the control method is verified for validity and effectiveness.

RLP Performance Improvement by Spurious NAK Suppression algorithm (Spurious NAK Suppression 알고리즘을 통한 RLP 성능향상)

  • Lee, Sang-Ho
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.486-490
    • /
    • 2008
  • 본 논문에서는 Spurious NAK Suppression알고리즘을 통하여 RLP의 성능향상에 대한 기법을 제안한다. 일반적으로, Hybrid ARQ기법에서는 MAC과 Physical Layer에서의 Retransmission 및 Error Correction으로 무선환경에서의 Error를 줄이고 latency를 보장하고 있다. 그러나 Hybrid ARQ에서의 Multiple SAW나 Selective-ARQ에 의해서 인접한 Packet들 간의 out-of-sequence문제가 발생할 수 밖에 없으며, upper layer인 RLP(혹은 RLC)에서는 이를 re-sequencing하여야 하는 부담감이 생기게 된다. 본 논문에서는 RLP receiver에서의 re-sequencing방법에 있어서, 효율적으로 RLP-NAK의 전송시점을 결정하는 NAK suppression 방법을 제안하고 있으며, 실험을 통하여 높은 성능향상을 보임을 확인할 수 있다.

  • PDF

A Comparative Quantitative Analysis of IDEAL (Iterative Decomposition of Water and Fat with Echo Asymmetry and Least Squares Estimation) and CHESS (Chemical Shift Selection Suppression) Technique in 3.0T Musculoskeletal MRI

  • Kim, Myoung-Hoon;Cho, Jae-Hwan;Shin, Seong-Gyu;Dong, Kyung-Rae;Chung, Woon-Kwan;Park, Tae-Hyun;Ahn, Jae-Ouk;Park, Cheol-Soo;Jang, Hyon-Chol;Kim, Yoon-Shin
    • Journal of Magnetics
    • /
    • v.17 no.2
    • /
    • pp.145-152
    • /
    • 2012
  • Patients who underwent hip arthroplasty using the conventional fat suppression technique (CHESS) and a new technique (IDEAL) were compared quantitatively to assess the effectiveness and usefulness of the IDEAL technique. In 20 patients who underwent hip arthroplasty from March 2009 to December 2010, fat suppression T2 and T1 weighted images were obtained on a 3.0T MR scanner using the CHESS and IDEAL techniques. The level of distortion in the area of interest, the level of the development of susceptibility artifacts, and homogeneous fat suppression were analyzed from the acquired images. Quantitative analysis revealed the IDEAL technique to produce a lower level of image distortion caused by the development of susceptibility artifacts due to metal on the acquired images compared to the CHESS technique. Qualitative analysis of the anterior area revealed the IDEAL technique to generate fewer susceptibility artifacts than the CHESS technique but with homogeneous fat suppression. In the middle area, the IDEAL technique generated fewer susceptibility artifacts than the CHESS technique but with homogeneous fat suppression. In the posterior area, the IDEAL technique generated fewer susceptibility artifacts than the CHESS technique. Fat suppression was not statistically different, and the two techniques achieved homogeneous fat suppression. In conclusion, the IDEAL technique generated fewer susceptibility artifacts caused by metals and less image distortion than the CHESS technique. In addition, homogeneous fat suppression was feasible. In conclusion, the IDEAL technique generates high quality images, and can provide good information for diagnosis.

Design of Wilkinson Power Divider for nth Harmonic Suppression (고조파 제거 기능을 갖는 윌킨슨 전력분배기의 설계)

  • Kim, Jong-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.42-46
    • /
    • 2014
  • A modified network to suppress the nth harmonics in a Wilkinson power divider is presented. The solution has been found by adding transmission lines, whose electrical lengths are determined by using the suppression terms, between two transformers of the traditional design. Experimental results show the second and third harmonics levels achieved are -45.3 and -46.4 dB, respectively, while the performance of the power divider at the fundamental frequency is maintained.

Suppression of IEEE 802.11a Interference in TH-UWB Systems Using Singular Value Decomposition in Wireless Multipath Channels

  • Xu, Shaoyi;Kwak, Kyung-Sup
    • Journal of Communications and Networks
    • /
    • v.10 no.1
    • /
    • pp.63-70
    • /
    • 2008
  • Narrow-band interference (NBI) from the coexisting narrow-band services affects the performance of ultra wideband (UWB) systems considerably due to the high power of these narrow-band signals with respect to the UWB signals. Specifically, IEEE 802.11a systems which operate around 5 GHz and overlap the band of UWB signals may interfere with UWB systems significantly. In this paper, we suggest a novel NBI suppression technique based on singular value decomposition (SVD) algorithm in time hopping UWB (TH-UWB) systems. SVD is used to approximate the interference which then is subtracted from the received signals. The algorithm precision and closed-form bit error rate (BER) expression are derived in the wireless multipath channel. Comparing with the conventional suppression methods such as a notch filter and a RAKE receiver, the proposed method is simple and robust and especially suitable for UWB systems.

Low power and high speed Data-dependent Precharge Suppression DFF (저전력, 고속데이터 의존 프리차지 억제 DFF)

  • 채관엽;기훈재;황인철;김수원
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.240-243
    • /
    • 1999
  • This paper presents a data-dependent precharge suppression(DPS) D-flip-flop(DFF) with precharge suppression scheme according to data-transition probability The main feature of the DPS DFF is that precharge is suppressed when there is no data transition. The proposed DPS DFF consumes less power than the conventional Yuan-Svensson's true single phase clocking(TSPC) DFF when the data-transition probability is low. The simulation result shows that the power consumption is reduced by 42.2 % when the data-transition probability is 30%.

  • PDF

Dimensionality of emotion suppression and psychosocial adaptation: Based on the cognitive process model of emotion processing (정서 처리의 인지 평가모델을 기반으로 한 정서 억제의 차원성과 심리 사회적 적응)

  • Woo, Sungbum
    • Korean Journal of Culture and Social Issue
    • /
    • v.27 no.4
    • /
    • pp.475-503
    • /
    • 2021
  • The purpose of this study is to clarify the constructs of emotion suppression and help understanding on the multidimensional nature of emotion suppression by classifying constructs for suppression according to the KMW model. Also, this study examined the gender differences of emotion suppression. For this purpose, 657 adult male and female subjects were evaluated for attitude toward emotions, and difficulty in emotional regulation, as well as depression, state anger and daily stress scale. As a result of the exploratory factor analysis on the scales related to the emotion suppression factors, the emotion suppression factors corresponding to each stage of the KMW model were found to be 'distraction against emotional information, 'difficulty in understanding and interpretation of emotions', 'emotion control beliefs', 'vulnerability on emotional expression beliefs'. Next, the study participants were classified by performing a cluster analysis based on each emotion suppression factor. As a result, four clusters were extracted and named 'emotional control belief cluster', 'emotional expression cluster', 'emotional attention failure cluster', and 'general emotional suppression cluster'. As a result of examining the average difference of male depression, depression, state anger, and daily stress for each group, significant differences were found in all dependent variables. As a result of examining whether there is a difference in the frequency of emotional suppression clusters according to gender, the frequency of emotional suppression clusters was high in men, and the ratio of emotional expression clusters was high in women. Finally, it was analyzed whether there was a gender difference in the effect of the emotional suppression cluster on psychosocial adaptation, and the implications were discussed based on the results of this study.

A New Structure Frequency Doubler Using Phase Delay Line (위상 지연 선로를 이용한 새로운 구조의 주파수 2체배기)

  • Cho, Seung-Yong;Lee, Kyoung-Hak;Kim, Yong-Hwan;Do, Ji-Hoon;Lee, Hyung-Kyu;Hong, Ui-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2A
    • /
    • pp.213-219
    • /
    • 2007
  • In this paper, A novel structure of frequency doubler using Phase Delay line and $90^{\circ}$ Hybrid coupler at harmonic output have been designed and implemented to improve suppression. Proposed structure of frequency doubler improve output. coupling and fundamental suppression. Active frequency doubler with band from $2.13{\sim}2.15GHz\;to\;4.26{\sim}4.3GHz$ was designed and fabricated with 10dBm input power, 0.79dB conversion gain and -55.54dBc suppression at fundamental frequency, -44.76dBc suppression at third harmonic frequency 6.42GHz and -39.18dBc suppression at fourth harmonic frequency 8.56GHz.