• Title/Summary/Keyword: Information Security Learning

Search Result 1,001, Processing Time 0.03 seconds

Problems of Applying Information Technologies in Public Governance

  • Goshovska, Valentyna;Danylenko, Lydiia;Hachkov, Andrii;Paladiiichuk, Sergii;Dzeha, Volodymyr
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.71-78
    • /
    • 2021
  • The relevance of research provides the necessity to identify the basic problems in the public governance sphere and information technology relations, forasmuch as understanding such interconnections can indicate the consequences of the development and spreading information technologies. The purpose of the research is to outline the issues of applying information technologies in public governance sphere. 500 civil servants took part in the survey (Ukraine). A two-stage study was conducted in order to obtain practical results of the research. The first stage involved collecting and analyzing the responses of civil servants on the Mentimeter online platform. In the second stage, the administrator used the SWOT-analysis system. The tendencies in using information technologies have been determined as follows: the institutional support development; creation of analytical portals for ensuring public control; level of accountability, transparency, activity of civil servants; implementation of e-government projects; changing the philosophy of electronic services development. Considering the threats and risks to the public governance system in the context of applying information technologies, the following aspects generated by societal requirements have been identified, namely: creation of the digital bureaucracy system; preservation of information and digital inequality; insufficient level of knowledge and skills in the field of digital technologies, reducing the publicity of the state and municipal governance system. Weaknesses of modern public governance in the context of IT implementation have been highlighted, namely: "digitization for digitalization"; lack of necessary legal regulation; inefficiency of electronic document management (issues caused by the imperfection of the interface of reporting interactive forms, frequent changes in the composition of indicators in reporting forms, the desire of higher authorities to solve the problem of their introduction); lack of data analysis infrastructure (due to imperfections in the organization of interaction between departments and poor capacity of information resources; lack of analytical databases), lack of necessary digital competencies for civil servants. Based on the results of SWOT-analysis, the strengths have been identified as follows: (possibility of continuous communication; constant self-learning); weaknesses (age restrictions for civil servants; insufficient acquisition of knowledge); threats (system errors in the provision of services through automation); opportunities for the introduction of IT in the public governance system (broad global trends; facilitation of the document management system). The practical significance of the research lies in providing recommendations for eliminating the problems of IT implementation in the public governance sphere outlined by civil servants..

A Scheme for Identifying Malicious Applications Based on API Characteristics (API 특성 정보기반 악성 애플리케이션 식별 기법)

  • Cho, Taejoo;Kim, Hyunki;Lee, Junghwan;Jung, Moongyu;Yi, Jeong Hyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.1
    • /
    • pp.187-196
    • /
    • 2016
  • Android applications are inherently vulnerable to a repackaging attack such that malicious codes are easily inserted into an application and then resigned by the attacker. These days, it occurs often that such private or individual information is leaked. In principle, all Android applications are composed of user defined methods and APIs. As well as accessing to resources on platform, APIs play a role as a practical functional feature, and user defined methods play a role as a feature by using APIs. In this paper we propose a scheme to analyze sensitive APIs mostly used in malicious applications in terms of how malicious applications operate and which API they use. Based on the characteristics of target APIs, we accumulate the knowledge on such APIs using a machine learning scheme based on Naive Bayes algorithm. Resulting from the learned results, we are able to provide fine-grained numeric score on the degree of vulnerabilities of mobile applications. In doing so, we expect the proposed scheme will help mobile application developers identify the security level of applications in advance.

An Implementation and Effectiveness Analysis of Web Based Training System for the Subjects of Computer Education in Educational University (교육대학교 컴퓨터교육 교과에서의 웹기반 훈련 시스템의 구축과 효율성 분석)

  • Han, Kyu-Jung
    • Journal of The Korean Association of Information Education
    • /
    • v.7 no.1
    • /
    • pp.91-101
    • /
    • 2003
  • The advantages of Web Based Training(WBT) are flexible delivery of training, easy distribution, security through registration and ease of content update. And WBT also provide a powerful instructional environment. An obvious instructional advantage of WBT is the ability to provide for the delivery rich multimedia to learners. In this paper, we have proposed the curricula for the Subjects of Computer Education in University. And We implemented the Web Based Training System for the Subjects of Computer Education including the proposed curricula. The Proposed system are composed of student's learning part, lecture's teaching part, and operator's management part. And we show the Effectiveness and Weakness of proposed system, based on the students answering about various questions related proposed system's effectiveness.

  • PDF

Analyzing Effective of Activation Functions on Recurrent Neural Networks for Intrusion Detection

  • Le, Thi-Thu-Huong;Kim, Jihyun;Kim, Howon
    • Journal of Multimedia Information System
    • /
    • v.3 no.3
    • /
    • pp.91-96
    • /
    • 2016
  • Network security is an interesting area in Information Technology. It has an important role for the manager monitor and control operating of the network. There are many techniques to help us prevent anomaly or malicious activities such as firewall configuration etc. Intrusion Detection System (IDS) is one of effective method help us reduce the cost to build. The more attacks occur, the more necessary intrusion detection needs. IDS is a software or hardware systems, even though is a combination of them. Its major role is detecting malicious activity. In recently, there are many researchers proposed techniques or algorithms to build a tool in this field. In this paper, we improve the performance of IDS. We explore and analyze the impact of activation functions applying to recurrent neural network model. We use to KDD cup dataset for our experiment. By our experimental results, we verify that our new tool of IDS is really significant in this field.

Detecting Cyber Threats Domains Based on DNS Traffic (DNS 트래픽 기반의 사이버 위협 도메인 탐지)

  • Lim, Sun-Hee;Kim, Jong-Hyun;Lee, Byung-Gil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.11
    • /
    • pp.1082-1089
    • /
    • 2012
  • Recent malicious attempts in Cyber space are intended to emerge national threats such as Suxnet as well as to get financial benefits through a large pool of comprised botnets. The evolved botnets use the Domain Name System(DNS) to communicate with the C&C server and zombies. DNS is one of the core and most important components of the Internet and DNS traffic are continually increased by the popular wireless Internet service. On the other hand, domain names are popular for malicious use. This paper studies on DNS-based cyber threats domain detection by data classification based on supervised learning. Furthermore, the developed cyber threats domain detection system using DNS traffic analysis provides collection, analysis, and normal/abnormal domain classification of huge amounts of DNS data.

Anomaly Detection Model Using THRE-KBANN (THRE-KBANN을 이용한 이상현상탐지모델)

  • Shim, Dong-Hee
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.38 no.5
    • /
    • pp.37-43
    • /
    • 2001
  • Since Internet has been used anywhere, illegal intrusion to a certain host or network become the ciritical factor in security. Although many anomaly detection models have been proposed using the statistical analysis, data mining, genetic algorithm/programming to detect illegal intrusions, these models has defects to detect new types of intrusions. THRE-KBANN (theory-refinement knowledge-based artificial neural network) which can learn continuously based on KBANN, is proposed for the anomaly detection model in this paper. The performance of this model is compared with that of the model based on data mining using the experimental data. The ability of continual learning for the detection of new types of intrusions is also evaluated.

  • PDF

Using weighted Support Vector Machine to address the imbalanced classes problem of Intrusion Detection System

  • Alabdallah, Alaeddin;Awad, Mohammed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.5143-5158
    • /
    • 2018
  • Improving the intrusion detection system (IDS) is a pressing need for cyber security world. With the growth of computer networks, there are constantly daily new attacks. Machine Learning (ML) is one of the most important fields which have great contribution to address the intrusion detection issues. One of these issues relates to the imbalance of the diverse classes of network traffic. Accuracy paradox is a result of training ML algorithm with imbalanced classes. Most of the previous efforts concern improving the overall accuracy of these models which is truly important. However, even they improved the total accuracy of the system; it fell in the accuracy paradox. The seriousness of the threat caused by the minor classes and the pitfalls of the previous efforts to address this issue is the motive for this work. In this paper, we consolidated stratified sampling, cost function and weighted Support Vector Machine (WSVM) method to address the accuracy paradox of ID problem. This model achieved good results of total accuracy and superior results in the small classes like the User-To-Remote and Remote-To-Local attacks using the improved version of the benchmark dataset KDDCup99 which is called NSL-KDD.

Face Recognition using 2D-PCA and Image Partition (2D - PCA와 영상분할을 이용한 얼굴인식)

  • Lee, Hyeon Gu;Kim, Dong Ju
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.2
    • /
    • pp.31-40
    • /
    • 2012
  • Face recognition refers to the process of identifying individuals based on their facial features. It has recently become one of the most popular research areas in the fields of computer vision, machine learning, and pattern recognition because it spans numerous consumer applications, such as access control, surveillance, security, credit-card verification, and criminal identification. However, illumination variation on face generally cause performance degradation of face recognition systems under practical environments. Thus, this paper proposes an novel face recognition system using a fusion approach based on local binary pattern and two-dimensional principal component analysis. To minimize illumination effects, the face image undergoes the local binary pattern operation, and the resultant image are divided into two sub-images. Then, two-dimensional principal component analysis algorithm is separately applied to each sub-images. The individual scores obtained from two sub-images are integrated using a weighted-summation rule, and the fused-score is utilized to classify the unknown user. The performance evaluation of the proposed system was performed using the Yale B database and CMU-PIE database, and the proposed method shows the better recognition results in comparison with existing face recognition techniques.

Identification Systems of Fake News Contents on Artificial Intelligence & Bigdata

  • KANG, Jangmook;LEE, Sangwon
    • International journal of advanced smart convergence
    • /
    • v.10 no.3
    • /
    • pp.122-130
    • /
    • 2021
  • This study is about an Artificial Intelligence-based fake news identification system and its methods to determine the authenticity of content distributed over the Internet. Among the news we encounter is news that an individual or organization intentionally writes something that is not true to achieve a particular purpose, so-called fake news. In this study, we intend to design a system that uses Artificial Intelligence techniques to identify fake content that exists within the news. The proposed identification model will propose a method of extracting multiple unit factors from the target content. Through this, attempts will be made to classify unit factors into different types. In addition, the design of the preprocessing process will be carried out to parse only the necessary information by analyzing the unit factor. Based on these results, we will design the part where the unit fact is analyzed using the deep learning prediction model as a predetermined unit. The model will also include a design for a database that determines the degree of fake news in the target content and stores the information in the identified unit factor through the analyzed unit factor.

Research on Federated Learning with Differential Privacy (차분 프라이버시를 적용한 연합학습 연구)

  • Jueun Lee;YoungSeo Kim;SuBin Lee;Ho Bae
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.749-752
    • /
    • 2024
  • 연합학습은 클라이언트가 중앙 서버에 원본 데이터를 주지 않고도 학습할 수 있도록 설계된 분산된 머신러닝 방법이다. 그러나 클라이언트와 중앙 서버 사이에 모델 업데이트 정보를 공유한다는 점에서 여전히 추론 공격(Inference Attack)과 오염 공격(Poisoning Attack)의 위험에 노출되어 있다. 이러한 공격을 방어하기 위해 연합학습에 차분프라이버시(Differential Privacy)를 적용하는 방안이 연구되고 있다. 차분 프라이버시는 데이터에 노이즈를 추가하여 민감한 정보를 보호하면서도 유의미한 통계적 정보 쿼리는 공유할 수 있도록 하는 기법으로, 노이즈를 추가하는 위치에 따라 전역적 차분프라이버시(Global Differential Privacy)와 국소적 차분 프라이버시(Local Differential Privacy)로 나뉜다. 이에 본 논문에서는 차분 프라이버시를 적용한 연합학습의 최신 연구 동향을 전역적 차분 프라이버시를 적용한 방향과 국소적 차분 프라이버시를 적용한 방향으로 나누어 검토한다. 또한 이를 세분화하여 차분 프라이버시를 발전시킨 방식인 적응형 차분 프라이버시(Adaptive Differential Privacy)와 개인화된 차분 프라이버시(Personalized Differential Privacy)를 응용하여 연합학습에 적용한 방식들에 대하여 특징과 장점 및 한계점을 분석하고 향후 연구방향을 제안한다.