• Title/Summary/Keyword: Information Security Learning

Search Result 1,001, Processing Time 0.029 seconds

Distinction of Real Face and Photo using Stereo Vision (스테레오비전을 이용한 실물 얼굴과 사진의 구분)

  • Shin, Jin-Seob;Kim, Hyun-Jung;Won, Il-Yong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.7
    • /
    • pp.17-25
    • /
    • 2014
  • In the devices that leave video records, it is an important issue to distinguish whether the input image is a real object or a photo when securing an identifying image. Using a single image and sensor, which is a simple way to distinguish the target from distance measurement has many weaknesses. Thus, this paper proposes a way to distinguish a simple photo and a real object by using stereo images. It is not only measures the distance to the target, but also checks a three-dimensional effect by making the depth map of the face area. They take pictures of the photos and the real faces, and the measured value of the depth map is applied to the learning algorithm. Exactly through iterative learning to distinguish between the real faces and the photos looked for patterns. The usefulness of the proposed algorithm was verified experimentally.

Biometrics System Technology Trends Based on Biosignal (생체신호 기반 바이오인식 시스템 기술 동향)

  • Choi, Gyu-Ho;Moon, Hae-Min;Pan, Sung-Bum
    • Journal of Digital Convergence
    • /
    • v.15 no.1
    • /
    • pp.381-391
    • /
    • 2017
  • Biometric technology is a technology for authenticating a user using the physical or behavioral features of the inherent characteristics of the individual. With the necessity and efficiency of the technology in the fields of finance, security, access control, medical welfare, inspection, and entertainment, the service range has been expanding. Biometrics using biometric information such as fingerprints and faces have been exposed to counterfeit and disguised threats and become a social problem. Recent studies using a bio-signal from the inside of the body other than the bio-information of the external body are being developed. This paper analyzes the recent research and technology of biometric systems using bio-signals, ECG, heart sounds, EEG, and EMG to present the skills needed for the development direction. In the future, utilizing the deep learning to build and analyze database to manage bio-signal based big data for the complex condition of individuals, biometrics technologies suitable for real time environment are expected to be researched.

Malware Classification System to Support Decision Making of App Installation on Android OS (안드로이드 OS에서 앱 설치 의사결정 지원을 위한 악성 앱 분류 시스템)

  • Ryu, Hong Ryeol;Jang, Yun;Kwon, Taekyoung
    • Journal of KIISE
    • /
    • v.42 no.12
    • /
    • pp.1611-1622
    • /
    • 2015
  • Although Android systems provide a permission-based access control mechanism and demand a user to decide whether to install an app based on its permission list, many users tend to ignore this phase. Thus, an improved method is necessary for users to intuitively make informed decisions when installing a new app. In this paper, with regard to the permission-based access control system, we present a novel approach based on a machine-learning technique in order to support a user decision-making on the fly. We apply the K-NN (K-Nearest Neighbors) classification algorithm with necessary weighted modifications for malicious app classification, and use 152 Android permissions as features. Our experiment shows a superior classification result (93.5% accuracy) compared to other previous work. We expect that our method can help users make informed decisions at the installation step.

An examination of Akers' Social Strcture and Social Learning Model with PHDCN Data (미국의 PHDCN 데이터를 사용한 Akers의 사회구조 및 사회학습이론에 대한 다층적 회귀분석연구)

  • Kim, Eunyoung;Park Junseok
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.4
    • /
    • pp.384-390
    • /
    • 2012
  • This study attempts to test the effects of neighborhoods on children and adolescents' alcohol, cigarette and marijuana use. Theoretically, this study was guided by Akers' (1998) SSSL model as potential explanations for understanding the linkage and provided partial test of the model. More specifically, it aims to test the mediation effects of one of core propositions of the SSSL model; whether differential association with deviant peers as well as with conforming peers mediates social disorganization of neighborhoods on adolescent substance and drug use in a different direction. Using multilevel regression techniques with robust standard error, this study utilized data from 1,791 children and adolescents who were nested in 80 neighborhoods in Chicago. The findings of the study provide mixed supports for the SSSL model. That is, it found that there are not only mediation effects but also moderation effects of differential association on children and adolescents' substance and drug use.

Comparative Analysis of CNN Models for Leukemia Diagnosis (백혈병 진단을 위한 CNN 모델 비교 분석)

  • Lee, Yeon-Ji;Ryu, Jung-Hwa;Lee, Il-Gu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.279-282
    • /
    • 2022
  • Acute lymphoblastic leukemia is an acute leukemia caused by suppression of bone marrow function due to overgrowth of immature lymphocytes in the bone marrow. It accounts for 30% of acute leukemia in adults, and children show a cure rate of over 80% with chemotherapy, while adults show a low survival rate of 20% to 50%. However, research on a machine learning algorithm based on medical image data for the diagnosis of acute lymphoblastic leukemia is in the initial stage. In this paper, we compare and analyze CNN algorithm models for quick and accurate diagnosis. Using four models, an experimental environment for comparative analysis of acute lymphoblastic leukemia diagnostic models was established, and the algorithm with the best accuracy was selected for the given medical image data. According to the experimental results, among the four CNN models, the InceptionV3 model showed the best performance with an accuracy of 98.9%.

  • PDF

IoT botnet attack detection using deep autoencoder and artificial neural networks

  • Deris Stiawan;Susanto ;Abdi Bimantara;Mohd Yazid Idris;Rahmat Budiarto
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1310-1338
    • /
    • 2023
  • As Internet of Things (IoT) applications and devices rapidly grow, cyber-attacks on IoT networks/systems also have an increasing trend, thus increasing the threat to security and privacy. Botnet is one of the threats that dominate the attacks as it can easily compromise devices attached to an IoT networks/systems. The compromised devices will behave like the normal ones, thus it is difficult to recognize them. Several intelligent approaches have been introduced to improve the detection accuracy of this type of cyber-attack, including deep learning and machine learning techniques. Moreover, dimensionality reduction methods are implemented during the preprocessing stage. This research work proposes deep Autoencoder dimensionality reduction method combined with Artificial Neural Network (ANN) classifier as botnet detection system for IoT networks/systems. Experiments were carried out using 3- layer, 4-layer and 5-layer pre-processing data from the MedBIoT dataset. Experimental results show that using a 5-layer Autoencoder has better results, with details of accuracy value of 99.72%, Precision of 99.82%, Sensitivity of 99.82%, Specificity of 99.31%, and F1-score value of 99.82%. On the other hand, the 5-layer Autoencoder model succeeded in reducing the dataset size from 152 MB to 12.6 MB (equivalent to a reduction of 91.2%). Besides that, experiments on the N_BaIoT dataset also have a very high level of accuracy, up to 99.99%.

Real-time Dog Behavior Analysis and Care System Using Sensor Module and Artificial Neural Network (센서 모듈과 인공신경망을 활용한 실시간 반려견 행동 분석 및 케어 시스템)

  • Hee Rae Lee;Seon Gyeong Kim;Hyung Gyu Lee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.4
    • /
    • pp.35-42
    • /
    • 2024
  • In this study, we propose a method for real-time recognition and analysis of dog behavior using a motion sensor and deep learning techonology. The existing home CCTV (Closed-Circuit Television) that recognizes dog behavior has privacy and security issues, so there is a need for new technologies to overcome them. In this paper, we propose a system that can analyze and care for a dog's behavior based on the data measured by the motion sensor. The study compares the MLP (Multi-Layer Perceptron) and CNN (Convolutional Neural Network) models to find the optimal model for dog behavior analysis, and the final model, which has an accuracy of about 82.19%, is selected. The model is lightened to confirm its potential for use in embedded environments.

A Study on Present Situation of Violence in School and Improvement Program (학교폭력의 실태분석과 개선 방안에 관한 연구)

  • Park, Youngman;Jeong, Jeahwan;Kim, Eunjung
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.1
    • /
    • pp.9-22
    • /
    • 2015
  • School is the place where teenagers spend most of their time, forming friendships and receiving guidance from the teachers. Their life in school is a procedure of learning lessons before advancing into the society. However, in this place of learning, misdeeds such as violence, extortion and bullying are actually happening, some of which developing into suicide, murder and prostitution. For this reason, violence in school, especially, raises concerns as a serious social problem these days. Therefore, this study suggests more practical improvement programs to solve the problem of the violence in school, by first investigating the concept and the actual situation of school violence, and by better understanding the problems resulted from the school violence. The researchers of the study suggest as follows: First is about strengthening the education that builds students' personality, where we investigate the methods of personality education that suit with the current situation and suggest what is necessary to improve them. The second is about expansion of the functioning of families and of the educational role of the household heads, where we argue the importance of education in the family in addition to the education in school, and we suggest the right way for the parents to discipline their children. The third is about expansion of counseling professionals and improving social environment, where we explain the importance of counseling professionals in preventing and solving the issues in school violence and suggest expansion of these professionals and also suggest installation and operation of dedicated counseling room in schools. The fourth is about use of school sheriffs, where we suggest dispatching school sheriffs nationwide and fully use them as a countermeasure against school violence.

Scaling Attack Method for Misalignment Error of Camera-LiDAR Calibration Model (카메라-라이다 융합 모델의 오류 유발을 위한 스케일링 공격 방법)

  • Yi-ji Im;Dae-seon Choi
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.1099-1110
    • /
    • 2023
  • The recognition system of autonomous driving and robot navigation performs vision work such as object recognition, tracking, and lane detection after multi-sensor fusion to improve performance. Currently, research on a deep learning model based on the fusion of a camera and a lidar sensor is being actively conducted. However, deep learning models are vulnerable to adversarial attacks through modulation of input data. Attacks on the existing multi-sensor-based autonomous driving recognition system are focused on inducing obstacle detection by lowering the confidence score of the object recognition model.However, there is a limitation that an attack is possible only in the target model. In the case of attacks on the sensor fusion stage, errors in vision work after fusion can be cascaded, and this risk needs to be considered. In addition, an attack on LIDAR's point cloud data, which is difficult to judge visually, makes it difficult to determine whether it is an attack. In this study, image scaling-based camera-lidar We propose an attack method that reduces the accuracy of LCCNet, a fusion model (camera-LiDAR calibration model). The proposed method is to perform a scaling attack on the point of the input lidar. As a result of conducting an attack performance experiment by size with a scaling algorithm, an average of more than 77% of fusion errors were caused.

Improving Test Accuracy on the MNIST Dataset using a Simple CNN with Batch Normalization

  • Seungbin Lee;Jungsoo Rhee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.1-7
    • /
    • 2024
  • In this paper, we proposes a Convolutional Neural Networks(CNN) equipped with Batch Normalization(BN) for handwritten digit recognition training the MNIST dataset. Aiming to surpass the performance of LeNet-5 by LeCun et al., a 6-layer neural network was designed. The proposed model processes 28×28 pixel images through convolution, Max Pooling, and Fully connected layers, with the batch normalization to improve learning stability and performance. The experiment utilized 60,000 training images and 10,000 test images, applying the Momentum optimization algorithm. The model configuration used 30 filters with a 5×5 filter size, padding 0, stride 1, and ReLU as activation function. The training process was set with a mini-batch size of 100, 20 epochs in total, and a learning rate of 0.1. As a result, the proposed model achieved a test accuracy of 99.22%, surpassing LeNet-5's 99.05%, and recorded an F1-score of 0.9919, demonstrating the model's performance. Moreover, the 6-layer model proposed in this paper emphasizes model efficiency with a simpler structure compared to LeCun et al.'s LeNet-5 (7-layer model) and the model proposed by Ji, Chun and Kim (10-layer model). The results of this study show potential for application in real industrial applications such as AI vision inspection systems. It is expected to be effectively applied in smart factories, particularly in determining the defective status of parts.