• Title/Summary/Keyword: Information Security Learning

Search Result 1,001, Processing Time 0.026 seconds

A Data Analysis and Visualization of AI Ethics -Focusing on the interactive AI service 'Lee Luda'- (인공지능 윤리 인식에 대한 데이터 분석 및 시각화 연구 -대화형 인공지능 서비스 '이루다'를 중심으로-)

  • Lee, Su-Ryeon;Choi, Eun-Jung
    • Journal of Digital Convergence
    • /
    • v.20 no.2
    • /
    • pp.269-275
    • /
    • 2022
  • As artificial intelligence services targeting humans increase, social demands are increasing that artificial intelligence should also be made on an ethical basis. Following this trend, the government and businesses are preparing policies and norms related to artificial intelligence ethics. In order to establish reasonable policies and norms, the first step is to understand the public's perceptions. In this paper, social data and news comments were collected and analyzed to understand the public's perception related to artificial intelligence and ethics. Interest analysis, emotional analysis, and discourse analysis were performed and visualized on the collected datasets. As a result of the analysis, interest in "artificial intelligence ethics" and "artificial intelligence" favorability showed an inversely proportional correlation. As a result of discourse analysis, the biggest issue was "personal information leakage," and it also showed a discourse on contamination and deflection of learning data and whether computer-made artificial intelligence should be given a legal personality. This study can be used as data to grasp the public's perception when preparing artificial intelligence ethical norms and policies.

The Role of Smart Technologies in Training Future Specialists

  • Oksana, Popovych;Rostislav, Motsyk;Iryna, Mozul;Karina, Fedchenko;Andrii, Zhbanchyk;Olena, Terenko;Oleksandr, Kuchai
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.153-159
    • /
    • 2022
  • The article discusses the use of smart technologies in the training of future specialists. Today, learning using smart technologies is becoming a new educational standard, where information is presented in a logical sequence, computer training systems have powerful functions for the educational process. The functions of smart technologies are highlighted. It is noted that smart technologies are successfully used in the field of education and professional training. The concept of "smart education" is characterized. Smart education is an educational paradigm that underlies a new type of education system. The implementation of the smart education paradigm is aimed at the process of obtaining competencies and competencies for flexible and adapted interaction with the social, economic and technological environment. Smart education should ensure that the benefits of the global information society can be used to meet educational needs and interests. A special place is occupied by computer-based educational multimedia systems that allow you to deepen your knowledge, reduce the duration of training, and increase the number of students per teacher. The main principles of smart education are highlighted. Improving the efficiency of training in a modern higher education institution is impossible without the introduction of smart technologies in the organization of the educational process.

De-Identified Face Image Generation within Face Verification for Privacy Protection (프라이버시 보호를 위한 얼굴 인증이 가능한 비식별화 얼굴 이미지 생성 연구)

  • Jung-jae Lee;Hyun-sik Na;To-min Ok;Dae-seon Choi
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.2
    • /
    • pp.201-210
    • /
    • 2023
  • Deep learning-based face verificattion model show high performance and are used in many fields, but there is a possibility the user's face image may be leaked in the process of inputting the face image to the model. Althoughde-identification technology exists as a method for minimizing the exposure of face features, there is a problemin that verification performance decreases when the existing technology is applied. In this paper, after combining the face features of other person, a de-identified face image is created through StyleGAN. In addition, we propose a method of optimizingthe combining ratio of features according to the face verification model using HopSkipJumpAttack. We visualize the images generated by the proposed method to check the de-identification performance, and evaluate the ability to maintain the performance of the face verification model through experiments. That is, face verification can be performed using the de-identified image generated through the proposed method, and leakage of face personal information can be prevented.

Design of Deep Learning-based Tourism Recommendation System Based on Perceived Value and Behavior in Intelligent Cloud Environment (지능형 클라우드 환경에서 지각된 가치 및 행동의도를 적용한 딥러닝 기반의 관광추천시스템 설계)

  • Moon, Seok-Jae;Yoo, Kyoung-Mi
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.473-483
    • /
    • 2020
  • This paper proposes a tourism recommendation system in intelligent cloud environment using information of tourist behavior applied with perceived value. This proposed system applied tourist information and empirical analysis information that reflected the perceptual value of tourists in their behavior to the tourism recommendation system using wide and deep learning technology. This proposal system was applied to the tourism recommendation system by collecting and analyzing various tourist information that can be collected and analyzing the values that tourists were usually aware of and the intentions of people's behavior. It provides empirical information by analyzing and mapping the association of tourism information, perceived value and behavior to tourism platforms in various fields that have been used. In addition, the tourism recommendation system using wide and deep learning technology, which can achieve both memorization and generalization in one model by learning linear model components and neural only components together, and the method of pipeline operation was presented. As a result of applying wide and deep learning model, the recommendation system presented in this paper showed that the app subscription rate on the visiting page of the tourism-related app store increased by 3.9% compared to the control group, and the other 1% group applied a model using only the same variables and only the deep side of the neural network structure, resulting in a 1% increase in subscription rate compared to the model using only the deep side. In addition, by measuring the area (AUC) below the receiver operating characteristic curve for the dataset, offline AUC was also derived that the wide-and-deep learning model was somewhat higher, but more influential in online traffic.

Android Malware Analysis Technology Research Based on Naive Bayes (Naive Bayes 기반 안드로이드 악성코드 분석 기술 연구)

  • Hwang, Jun-ho;Lee, Tae-jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.5
    • /
    • pp.1087-1097
    • /
    • 2017
  • As the penetration rate of smartphones increases, the number of malicious codes targeting smartphones is increasing. I 360 Security 's smartphone malware statistics show that malicious code increased 437 percent in the first quarter of 2016 compared to the fourth quarter of 2015. In particular, malicious applications, which are the main means of distributing malicious code on smartphones, are aimed at leakage of user information, data destruction, and money withdrawal. Often, it is operated by an API, which is an interface that allows you to control the functions provided by the operating system or programming language. In this paper, we propose a mechanism to detect malicious application based on the similarity of API pattern in normal application and malicious application by learning pattern of API in application derived from static analysis. In addition, we show a technique for improving the detection rate and detection rate for each label derived by using the corresponding mechanism for the sample data. In particular, in the case of the proposed mechanism, it is possible to detect when the API pattern of the new malicious application is similar to the previously learned patterns at a certain level. Future researches of various features of the application and applying them to this mechanism are expected to be able to detect new malicious applications of anti-malware system.

The Case Study for Path Selection Verification of IGP Routing Protocol (IGP 라우팅 프로토콜의 경로선택 검증을 위한 구현 사례)

  • Kim, No-Whan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.9
    • /
    • pp.197-204
    • /
    • 2014
  • RIP, EIGRP, OSPF are the interior gateway protocol for sending and receiving routing information among routers in AS(Autonomous System). Various path selection methods using the metric in regard to them have been studied recently but there are few examples that the contents learners understand theoretically are verified by the practice. The Best Path is determined by calculating the Cost value based on the relevant topology of each routing protocol. After implementing the virtual network, it is certain that the results tracking and verifying the relevant path selection of each routing protocol are consistent with the Best Path. If methods suggested in this paper are applied properly, the relevant path selection process of routing protocol can be understood systematically. And it is expected that the outstanding results of learning will be able to be achieved.

Cloud Attack Detection with Intelligent Rules

  • Pradeepthi, K.V;Kannan, A
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4204-4222
    • /
    • 2015
  • Cloud is the latest buzz word in the internet community among developers, consumers and security researchers. There have been many attacks on the cloud in the recent past where the services got interrupted and consumer privacy has been compromised. Denial of Service (DoS) attacks effect the service availability to the genuine user. Customers are paying to use the cloud, so enhancing the availability of services is a paramount task for the service provider. In the presence of DoS attacks, the availability is reduced drastically. Such attacks must be detected and prevented as early as possible and the power of computational approaches can be used to do so. In the literature, machine learning techniques have been used to detect the presence of attacks. In this paper, a novel approach is proposed, where intelligent rule based feature selection and classification are performed for DoS attack detection in the cloud. The performance of the proposed system has been evaluated on an experimental cloud set up with real time DoS tools. It was observed that the proposed system achieved an accuracy of 98.46% on the experimental data for 10,000 instances with 10 fold cross-validation. By using this methodology, the service providers will be able to provide a more secure cloud environment to the customers.

User-Customized News Service by use of Social Network Analysis on Artificial Intelligence & Bigdata

  • KANG, Jangmook;LEE, Sangwon
    • International journal of advanced smart convergence
    • /
    • v.10 no.3
    • /
    • pp.131-142
    • /
    • 2021
  • Recently, there has been an active service that provides customized news to news subscribers. In this study, we intend to design a customized news service system through Deep Learning-based Social Network Service (SNS) activity analysis, applying real news and avoiding fake news. In other words, the core of this study is the study of delivery methods and delivery devices to provide customized news services based on analysis of users, SNS activities. First of all, this research method consists of a total of five steps. In the first stage, social network service site access records are received from user terminals, and in the second stage, SNS sites are searched based on SNS site access records received to obtain user profile information and user SNS activity information. In step 3, the user's propensity is analyzed based on user profile information and SNS activity information, and in step 4, user-tailored news is selected through news search based on user propensity analysis results. Finally, in step 5, custom news is sent to the user terminal. This study will be of great help to news service providers to increase the number of news subscribers.

Convolution Neural Network based TW3 Maximum Height Prediction System (컨볼루션 신경망 기반의 TW3 최대신장예측 시스템)

  • Park, Si-hyeon;Cho, Young-bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.10
    • /
    • pp.1314-1319
    • /
    • 2018
  • The current TW3 - based maximum height prediction technique used in KMAA(Korean Medical Academy of Auxology) is manual and subjective, and it requires a lot of time and effort in the medical treatment, while the interest in the child's growth is very high. In addition, the technique of classifying images using deep learning, especially convolutional neural networks, is used in many fields at a more accurate level than the human eyes, also there is no exception in the medical field. In this paper, we introduce a TW3 algorithm using deep learning, that uses the convolutional neural network to predict the growth level of the left hand bone, to predict the maximum height of child and youth in order to increase the reliability of predictions and improve the convenience of the doctor.

2-Stage Detection and Classification Network for Kiosk User Analysis (디스플레이형 자판기 사용자 분석을 위한 이중 단계 검출 및 분류 망)

  • Seo, Ji-Won;Kim, Mi-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.668-674
    • /
    • 2022
  • Machine learning techniques using visual data have high usability in fields of industry and service such as scene recognition, fault detection, security and user analysis. Among these, user analysis through the videos from CCTV is one of the practical way of using vision data. Also, many studies about lightweight artificial neural network have been published to increase high usability for mobile and embedded environment so far. In this study, we propose the network combining the object detection and classification for mobile graphic processing unit. This network detects pedestrian and face, classifies age and gender from detected face. Proposed network is constructed based on MobileNet, YOLOv2 and skip connection. Both detection and classification models are trained individually and combined as 2-stage structure. Also, attention mechanism is used to improve detection and classification ability. Nvidia Jetson Nano is used to run and evaluate the proposed system.