• 제목/요약/키워드: Information Security Learning

검색결과 1,001건 처리시간 0.021초

Personal Information Detection by Using Na$\ddot{i}$ve Bayes Methodology (Na$\ddot{i}$ve Bayes 방법론을 이용한 개인정보 분류)

  • Kim, Nam-Won;Park, Jin-Soo
    • Journal of Intelligence and Information Systems
    • /
    • 제18권1호
    • /
    • pp.91-107
    • /
    • 2012
  • As the Internet becomes more popular, many people use it to communicate. With the increasing number of personal homepages, blogs, and social network services, people often expose their personal information online. Although the necessity of those services cannot be denied, we should be concerned about the negative aspects such as personal information leakage. Because it is impossible to review all of the past records posted by all of the people, an automatic personal information detection method is strongly required. This study proposes a method to detect or classify online documents that contain personal information by analyzing features that are common to personal information related documents and learning that information based on the Na$\ddot{i}$ve Bayes algorithm. To select the document classification algorithm, the Na$\ddot{i}$ve Bayes classification algorithm was compared with the Vector Space classification algorithm. The result showed that Na$\ddot{i}$ve Bayes reveals more excellent precision, recall, F-measure, and accuracy than Vector Space does. However, the measurement level of the Na$\ddot{i}$ve Bayes classification algorithm is still insufficient to apply to the real world. Lewis, a learning algorithm researcher, states that it is important to improve the quality of category features while applying learning algorithms to some specific domain. He proposes a way to incrementally add features that are dependent on related documents and in a step-wise manner. In another experiment, the algorithm learns the additional dependent features thereby reducing the noise of the features. As a result, the latter experiment shows better performance in terms of measurement than the former experiment does.

Novelty Detection on Web-server Log Dataset (웹서버 로그 데이터의 이상상태 탐지 기법)

  • Lee, Hwaseong;Kim, Ki Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제23권10호
    • /
    • pp.1311-1319
    • /
    • 2019
  • Currently, the web environment is a commonly used area for sharing information and conducting business. It is becoming an attack point for external hacking targeting on personal information leakage or system failure. Conventional signature-based detection is used in cyber threat but signature-based detection has a limitation that it is difficult to detect the pattern when it is changed like polymorphism. In particular, injection attack is known to the most critical security risks based on web vulnerabilities and various variants are possible at any time. In this paper, we propose a novelty detection technique to detect abnormal state that deviates from the normal state on web-server log dataset(WSLD). The proposed method is a machine learning-based technique to detect a minor anomalous data that tends to be different from a large number of normal data after replacing strings in web-server log dataset with vectors using machine learning-based embedding algorithm.

Analyzing the level of resilience by gender in computational thinking classes (컴퓨팅 사고 강좌에서 성별에 따른 회복탄력성 수준 분석)

  • Kim, Semin;Choi, Sookyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제25권2호
    • /
    • pp.252-258
    • /
    • 2021
  • Software subjects such as programming practice and physical computing may have differences between men and women, and there may be individual differences in resilience due to errors and debugging. Therefore, in this study, we analyze gender differences in computational thinking classes by using a resilience testing tool. The results of this study showed that the two groups were homogeneous, and the male group did not show significant changes in resilience, but the female group showed significant increases in resilience. This study confirmed the possibility of reducing the gender gap of learners by allowing a group of female students who did not show strength in traditional software education to become more motivated and interested in the information and communication field through appropriate learning content and learning strategies in computational thinking classes.

Ciphertext policy attribute-based encryption supporting unbounded attribute space from R-LWE

  • Chen, Zehong;Zhang, Peng;Zhang, Fangguo;Huang, Jiwu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권4호
    • /
    • pp.2292-2309
    • /
    • 2017
  • Ciphertext policy attribute-based encryption (CP-ABE) is a useful cryptographic technology for guaranteeing data confidentiality but also fine-grained access control. Typically, CP-ABE can be divided into two classes: small universe with polynomial attribute space and large universe with unbounded attribute space. Since the learning with errors over rings (R-LWE) assumption has characteristics of simple algebraic structure and simple calculations, based on R-LWE, we propose a small universe CP-ABE scheme to improve the efficiency of the scheme proposed by Zhang et al. (AsiaCCS 2012). On this basis, to achieve unbounded attribute space and improve the expression of attribute, we propose a large universe CP-ABE scheme with the help of a full-rank differences function. In this scheme, all polynomials in the R-LWE can be used as values of an attribute, and these values do not need to be enumerated at the setup phase. Different trapdoors are used to generate secret keys in the key generation and the security proof. Both proposed schemes are selectively secure in the standard model under R-LWE. Comparison with other schemes demonstrates that our schemes are simpler and more efficient. R-LWE can obtain greater efficiency, and unbounded attribute space means more flexibility, so our research is suitable in practices.

Linear SVM-Based Android Malware Detection and Feature Selection for Performance Improvement (선형 SVM을 사용한 안드로이드 기반의 악성코드 탐지 및 성능 향상을 위한 Feature 선정)

  • Kim, Ki-Hyun;Choi, Mi-Jung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제39C권8호
    • /
    • pp.738-745
    • /
    • 2014
  • Recently, mobile users continuously increase, and mobile applications also increase As mobile applications increase, the mobile users used to store sensitive and private information such as Bank information, location information, ID, password on their mobile devices. Therefore, recent malicious application targeted to mobile device instead of PC environment is increasing. In particular, since the Android is an open platform and includes security vulnerabilities, attackers prefer this environment. This paper analyzes the performance of malware detection system applying linear SVM machine learning classifier to detect Android malware application. This paper also performs feature selection in order to improve detection performance.

Face Recognition using Extended Center-Symmetric Pattern and 2D-PCA (Extended Center-Symmetric Pattern과 2D-PCA를 이용한 얼굴인식)

  • Lee, Hyeon Gu;Kim, Dong Ju
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • 제9권2호
    • /
    • pp.111-119
    • /
    • 2013
  • Face recognition has recently become one of the most popular research areas in the fields of computer vision, machine learning, and pattern recognition because it spans numerous applications, such as access control, surveillance, security, credit-card verification, and criminal identification. In this paper, we propose a simple descriptor called an ECSP(Extended Center-Symmetric Pattern) for illumination-robust face recognition. The ECSP operator encodes the texture information of a local face region by emphasizing diagonal components of a previous CS-LBP(Center-Symmetric Local Binary Pattern). Here, the diagonal components are emphasized because facial textures along the diagonal direction contain much more information than those of other directions. The facial texture information of the ECSP operator is then used as the input image of an image covariance-based feature extraction algorithm such as 2D-PCA(Two-Dimensional Principal Component Analysis). Performance evaluation of the proposed approach was carried out using various binary pattern operators and recognition algorithms on the Yale B database. The experimental results demonstrated that the proposed approach achieved better recognition accuracy than other approaches, and we confirmed that the proposed approach is effective against illumination variation.

Unethical Network Attack Detection and Prevention using Fuzzy based Decision System in Mobile Ad-hoc Networks

  • Thanuja, R.;Umamakeswari, A.
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.2086-2098
    • /
    • 2018
  • Security plays a vital role and is the key challenge in Mobile Ad-hoc Networks (MANET). Infrastructure-less nature of MANET makes it arduous to envisage the genre of topology. Due to its inexhaustible access, information disseminated by roaming nodes to other nodes is susceptible to many hazardous attacks. Intrusion Detection and Prevention System (IDPS) is undoubtedly a defense structure to address threats in MANET. Many IDPS methods have been developed to ascertain the exceptional behavior in these networks. Key issue in such IDPS is lack of fast self-organized learning engine that facilitates comprehensive situation awareness for optimum decision making. Proposed "Intelligent Behavioral Hybridized Intrusion Detection and Prevention System (IBH_IDPS)" is built with computational intelligence to detect complex multistage attacks making the system robust and reliable. The System comprises of an Intelligent Client Agent and a Smart Server empowered with fuzzy inference rule-based service engine to ensure confidentiality and integrity of network. Distributed Intelligent Client Agents incorporated with centralized Smart Server makes it capable of analyzing and categorizing unethical incidents appropriately through unsupervised learning mechanism. Experimental analysis proves the proposed model is highly attack resistant, reliable and secure on devices and shows promising gains with assured delivery ratio, low end-to-end delay compared to existing approach.

Generating Call Graph for PE file (PE 파일 분석을 위한 함수 호출 그래프 생성 연구)

  • Kim, DaeYoub
    • Journal of IKEEE
    • /
    • 제25권3호
    • /
    • pp.451-461
    • /
    • 2021
  • As various smart devices spread and the damage caused by malicious codes becomes more serious, malicious code detection technology using machine learning technology is attracting attention. However, if the training data of machine learning is constructed based on only the fragmentary characteristics of the code, it is still easy to create variants and new malicious codes that avoid it. To solve such a problem, a research using the function call relationship of malicious code as training data is attracting attention. In particular, it is expected that more advanced malware detection will be possible by measuring the similarity of graphs using GNN. This paper proposes an efficient method to generate a function call graph from binary code to utilize GNN for malware detection.

Anthropomorphic Animal Face Masking using Deep Convolutional Neural Network based Animal Face Classification

  • Khan, Rafiul Hasan;Lee, Youngsuk;Lee, Suk-Hwan;Kwon, Oh-Jun;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • 제22권5호
    • /
    • pp.558-572
    • /
    • 2019
  • Anthropomorphism is the attribution of human traits, emotions, or intentions to non-human entities. Anthropomorphic animal face masking is the process by which human characteristics are plotted on the animal kind. In this research, we are proposing a compact system which finds the resemblance between a human face and animal face using Deep Convolutional Neural Network (DCNN) and later applies morphism between them. The whole process is done by firstly finding which animal most resembles the particular human face through a DCNN based animal face classification. And secondly, doing triangulation based morphing between the particular human face and the most resembled animal face. Compared to the conventional manual Control Point Selection system using an animator, we are proposing a Viola-Jones algorithm based Control Point selection process which detects facial features for the human face and takes the Control Points automatically. To initiate our approach, we built our own dataset containing ten thousand animal faces and a fourteen layer DCNN. The simulation results firstly demonstrate that the accuracy of our proposed DCNN architecture outperforms the related methods for the animal face classification. Secondly, the proposed morphing method manages to complete the morphing process with less deformation and without any human assistance.

Evaluation of the Effect of Educational Smartphone App for Nursing Students

  • Yeon, Seunguk;Seo, Sukyong
    • International Journal of Advanced Culture Technology
    • /
    • 제7권2호
    • /
    • pp.60-66
    • /
    • 2019
  • The purpose of this study was to compare the effect of educational smartphone app with the effect of learning using conventional paper material. We developed an educational app for nursing students to learn how to read blood pressure and how to take a pulse. Evaluated was the effect of the app-based education by measuring the short term memory (right after the education), the long term memory (a week later) and the satisfaction. 25 college nursing students participated for the experiment group using the app-based education and 25 for the control group using paper-based education. We applied for statistical analysis Fisher's exact test and Independent t-test. The satisfaction of the app user's appeared significantly higher than that of the paper material user's (t=2.322, p=0.024). The short term memory score was 0.23 points higher in the experimental group (6.46 points) than in the control group (6.23 points), which was not statistically significant (t =0.422, p =0.675). Similar result came for the long term memory (t=1.006, p=0.320). After adjusting for the effect of a college grade using ANCOVA, the effect on memory was significantly higher in the experiment group. There might be differences in learning ability between the experimental and the control groups.