This paper proposes a lightweight deep learning network for detecting an image splicing forgery. The research on image forgery detection using CNN, a deep learning network, and research on detecting and localizing forgery in pixel units are in progress. Among them, CAT-Net, which learns the discrete cosine transform coefficients of images together with images, was released in 2022. The DCT coefficients presented by CAT-Net are combined with the JPEG artifact learning module and the backbone model as pre-learning, and the weights are fixed. The dataset used for pre-training is not included in the public dataset, and the backbone model has a relatively large number of network parameters, which causes overfitting in a small dataset, hindering generalization performance. In this paper, this learning module is designed to learn the characterization depending on the DCT domain in real-time during network training without pre-training. The DCT RRU-Net proposed in this paper is a network that combines RRU-Net which detects forgery by learning only images and JPEG artifact learning module. It is confirmed that the network parameters are less than those of CAT-Net, the detection performance of forgery is better than that of RRU-Net, and the generalization performance for various datasets improves through the network architecture and training method of DCT RRU-Net.
As side-channel analysis and machine learning algorithms share the same objective of classifying data, numerous studies have been proposed for adapting machine learning to side-channel analysis. However, a drawback of machine learning algorithms is that their performance depends on human engineering. Therefore, recent studies in the field focus on exploiting deep learning algorithms, which can extract features automatically from data. In this study, we survey recent advances in deep learning-based side-channel analysis. In particular, we outline how deep learning is applied to side-channel analysis, based on deep learning architectures and application methods. Furthermore, we describe its properties when using different architectures and application methods. Finally, we discuss our perspective on future research directions in this field.
Yin, Cheng Jet;Ayop, Zakiah;Anawar, Syarulnaziah;Othman, Nur Fadzilah;Zainudin, Norulzahrah Mohd
International Journal of Computer Science & Network Security
/
v.21
no.11
/
pp.294-300
/
2021
The current society relies upon social media on an everyday basis, which contributes to finding which of the following supervised machine learning algorithms used in sentiment analysis have higher accuracy in detecting Malay internet slang and short forms which can be offensive to a person. This paper is to determine which of the algorithms chosen in supervised machine learning with higher accuracy in detecting internet slang and short forms. To analyze the results of the supervised machine learning classifiers, we have chosen two types of datasets, one is political topic-based, and another same set but is mixed with 50 tweets per targeted keyword. The datasets are then manually labelled positive and negative, before separating the 275 tweets into training and testing sets. Naïve Bayes and Random Forest classifiers are then analyzed and evaluated from their performances. Our experiment results show that Random Forest is a better classifier compared to Naïve Bayes.
International Journal of Computer Science & Network Security
/
v.23
no.11
/
pp.190-194
/
2023
By looking the importance of communication, data delivery and access in various sectors including governmental, business and individual for any kind of data, it becomes mandatory to identify faults and flaws during cyber communication. To protect personal, governmental and business data from being misused from numerous advanced attacks, there is the need of cyber security. The information security provides massive protection to both the host machine as well as network. The learning methods are used for analyzing as well as preventing various attacks. Machine learning is one of the branch of Artificial Intelligence that plays a potential learning techniques to detect the cyber-attacks. In the proposed methodology, the Decision Tree (DT) which is also a kind of supervised learning model, is combined with the different cross-validation method to determine the accuracy and the execution time to identify the cyber-attacks from a very recent dataset of different network attack activities of network traffic in the UNSW-NB15 dataset. It is a hybrid method in which different types of attributes including Gini Index and Entropy of DT model has been implemented separately to identify the most accurate procedure to detect intrusion with respect to the execution time. The different DT methodologies including DT using Gini Index, DT using train-split method and DT using information entropy along with their respective subdivision such as using K-Fold validation, using Stratified K-Fold validation are implemented.
International Journal of Computer Science & Network Security
/
v.22
no.5
/
pp.327-329
/
2022
Education is affected by technical and scientific developments. Progress in one of these areas leads give way to new educational methods and strategies. One of these advanced learning modes is what has been conventionally termed as Micro-learning (ML). It has emerged in educational technology as a result of advances in information technology as well as advances in research in memory, brain, and social-cognitive processes.In this paper, the researcher discusses micro-learning in terms of its concepts, tools, and associated concepts, advantages and disadvantages.
The purpose of the study is to demonstrate the effects of revolutional leadership of manager at private security organization on members' learning directivity and organizational innovation behavior. The results attained from studying method and procedure as mentioned above are in the following. First, the revolutional leadership of manager at private security service organization influence learning directivity. That is, the more he or she shows revolutional leadership, the more enhanced the learning directivity of members. Second, the revolutional leadership of manager at private security service organization has effects on organizational innovation behavior. Thatis, the more he or she shows revolutional leadership the more enhanced organizational innovation behavior. Third, learning directivity of manager at private securitys service organization influences organizational innovation behavior. Thatis, the more he or she shows learning directivity, the more enhanced organizational innovation behavior. Taken all, revolutional leadership of manager at private security service organization affects organizational innovation behavior through learning directivity. It is shown that learning directivity is a key variable connecting revoultional leadership with organization al innovation behavior.
Recently, increasing security threats are not only interfering with business continuity of companies but they are al so causing serious problems on social and national levels. As violation of intellectual property rights increases due to growing competition between different companies and countries, companies are now required to follow various IT compliance regulations, under relevant legal obligations. This study proposed a model of convergence security compliance management by using machine learning, in order to help companies actively utilize IT compliance.
Journal of the Korea Institute of Information Security & Cryptology
/
v.29
no.4
/
pp.785-794
/
2019
Recently Deep Learning technology, one of the fourth industrial revolution technologies, is used to identify the hidden meaning of network data that is difficult to detect in the security arena and to predict attacks. Property and quality analysis of data sources are required before selecting the deep learning algorithm to be used for intrusion detection. This is because it affects the detection method depending on the contamination of the data used for learning. Therefore, the characteristics of the data should be identified and the characteristics selected. In this paper, the characteristics of malware were analyzed using network data set and the effect of each feature on performance was analyzed when the deep learning model was applied. The traffic classification experiment was conducted on the comparison of characteristics according to network characteristics and 96.52% accuracy was classified based on the selected characteristics.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.5
/
pp.1466-1488
/
2022
Recently, the importance and necessity of artificial intelligence (AI), especially machine learning, has been emphasized. In fact, studies are actively underway to solve complex and challenging problems through the use of AI systems, such as intelligent CCTVs, intelligent AI security systems, and AI surgical robots. Information security that involves analysis and response to security vulnerabilities of software is no exception to this and is recognized as one of the fields wherein significant results are expected when AI is applied. This is because the frequency of malware incidents is gradually increasing, and the available security technologies are limited with regard to the use of software security experts or source code analysis tools. We conducted a study on MalDC, a technique that converts malware into images using machine learning, MalDC showed good performance and was able to analyze and classify different types of malware. MalDC applies a preprocessing step to minimize the noise generated in the image conversion process and employs an image augmentation technique to reinforce the insufficient dataset, thus improving the accuracy of the malware classification. To verify the feasibility of our method, we tested the malware classification technique used by MalDC on a dataset provided by Microsoft and malware data collected by the Korea Internet & Security Agency (KISA). Consequently, an accuracy of 97% was achieved.
International Journal of Computer Science & Network Security
/
v.22
no.5
/
pp.103-114
/
2022
The Internet of Things (IoT) is one of the fastest technologies that are used in various applications and fields. The concept of IoT will not only be limited to the fields of scientific and technical life but will also gradually spread to become an essential part of our daily life and routine. Before, IoT was a complex term unknown to many, but soon it will become something common. IoT is a natural and indispensable routine in which smart devices and sensors are connected wirelessly or wired over the Internet to exchange and process data. With all the benefits and advantages offered by the IoT, it does not face many security and privacy challenges because the current traditional security protocols are not suitable for IoT technologies. In this paper, we presented a comprehensive survey of the latest studies from 2018 to 2021 related to the security of the IoT and the use of machine learning (ML) and deep learning and their applications in addressing security and privacy in the IoT. A description was initially presented, followed by a comprehensive overview of the IoT and its applications and the basic important safety requirements of confidentiality, integrity, and availability and its application in the IoT. Then we reviewed the attacks and challenges facing the IoT. We also focused on ML and its applications in addressing the security problem on the IoT.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.