• Title/Summary/Keyword: Information Security Learning

Search Result 1,001, Processing Time 0.022 seconds

A Hybrid Learning Model to Detect Morphed Images

  • Kumari, Noble;Mohapatra, AK
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.364-373
    • /
    • 2022
  • Image morphing methods make seamless transition changes in the image and mask the meaningful information attached to it. This can be detected by traditional machine learning algorithms and new emerging deep learning algorithms. In this research work, scope of different Hybrid learning approaches having combination of Deep learning and Machine learning are being analyzed with the public dataset CASIA V1.0, CASIA V2.0 and DVMM to find the most efficient algorithm. The simulated results with CNN (Convolution Neural Network), Hybrid approach of CNN along with SVM (Support Vector Machine) and Hybrid approach of CNN along with Random Forest algorithm produced 96.92 %, 95.98 and 99.18 % accuracy respectively with the CASIA V2.0 dataset having 9555 images. The accuracy pattern of applied algorithms changes with CASIA V1.0 data and DVMM data having 1721 and 1845 set of images presenting minimal accuracy with Hybrid approach of CNN and Random Forest algorithm. It is confirmed that the choice of best algorithm to find image forgery depends on input data type. This paper presents the combination of best suited algorithm to detect image morphing with different input datasets.

A Proposed Framework for Evaluating the Return on Investment of E-Learning Programs at Saudi Universities

  • Hanaa Yamani
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.2
    • /
    • pp.39-46
    • /
    • 2023
  • The purpose of this study is to introduce a proposed Framework for Evaluating the Return on Investment (ROI) of E-Learning Programs at Saudi Universities. To achieve this goal, the descriptive analysis methodology is used to analyze the literature review about e-learning and its evaluation from different viewpoints, especially from the ROI-related perspective. As well as the literature reviews related to ROI and the methods of calculating it inside society institutes. This study suggests a conceptual framework for evaluating the ROI of E-Learning Programs at Saudi Universities. This framework is based on the merging process among the analyze, design, develop, implement, and evaluate (ADDIE) model for designing e-learning programs, which gives detailed procedures for executing the program, several evaluating models for e-learning, and the Kirkpatrick model for evaluating the ROI of e-learning. It consists of seven stages (analysis, calculating the costs, design, development, implementation, calculation of the benefits, and calculation of the final ROI).

SuperDepthTransfer: Depth Extraction from Image Using Instance-Based Learning with Superpixels

  • Zhu, Yuesheng;Jiang, Yifeng;Huang, Zhuandi;Luo, Guibo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4968-4986
    • /
    • 2017
  • In this paper, we primarily address the difficulty of automatic generation of a plausible depth map from a single image in an unstructured environment. The aim is to extrapolate a depth map with a more correct, rich, and distinct depth order, which is both quantitatively accurate as well as visually pleasing. Our technique, which is fundamentally based on a preexisting DepthTransfer algorithm, transfers depth information at the level of superpixels. This occurs within a framework that replaces a pixel basis with one of instance-based learning. A vital superpixels feature enhancing matching precision is posterior incorporation of predictive semantic labels into the depth extraction procedure. Finally, a modified Cross Bilateral Filter is leveraged to augment the final depth field. For training and evaluation, experiments were conducted using the Make3D Range Image Dataset and vividly demonstrate that this depth estimation method outperforms state-of-the-art methods for the correlation coefficient metric, mean log10 error and root mean squared error, and achieves comparable performance for the average relative error metric in both efficacy and computational efficiency. This approach can be utilized to automatically convert 2D images into stereo for 3D visualization, producing anaglyph images that are visually superior in realism and simultaneously more immersive.

Enhanced Network Intrusion Detection using Deep Convolutional Neural Networks

  • Naseer, Sheraz;Saleem, Yasir
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.5159-5178
    • /
    • 2018
  • Network Intrusion detection is a rapidly growing field of information security due to its importance for modern IT infrastructure. Many supervised and unsupervised learning techniques have been devised by researchers from discipline of machine learning and data mining to achieve reliable detection of anomalies. In this paper, a deep convolutional neural network (DCNN) based intrusion detection system (IDS) is proposed, implemented and analyzed. Deep CNN core of proposed IDS is fine-tuned using Randomized search over configuration space. Proposed system is trained and tested on NSLKDD training and testing datasets using GPU. Performance comparisons of proposed DCNN model are provided with other classifiers using well-known metrics including Receiver operating characteristics (RoC) curve, Area under RoC curve (AuC), accuracy, precision-recall curve and mean average precision (mAP). The experimental results of proposed DCNN based IDS shows promising results for real world application in anomaly detection systems.

Fraud Detection in E-Commerce

  • Alqethami, Sara;Almutanni, Badriah;AlGhamdi, Manal
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.200-206
    • /
    • 2021
  • Fraud in e-commerce transaction increased in the last decade especially with the increasing number of online stores and the lockdown that forced more people to pay for services and groceries online using their credit card. Several machine learning methods were proposed to detect fraudulent transaction. Neural networks showed promising results, but it has some few drawbacks that can be overcome using optimization methods. There are two categories of learning optimization methods, first-order methods which utilizes gradient information to construct the next training iteration whereas, and second-order methods which derivatives use Hessian to calculate the iteration based on the optimization trajectory. There also some training refinements procedures that aims to potentially enhance the original accuracy while possibly reduce the model size. This paper investigate the performance of several NN models in detecting fraud in e-commerce transaction. The backpropagation model which is classified as first learning algorithm achieved the best accuracy 96% among all the models.

Comparing the Performance of 17 Machine Learning Models in Predicting Human Population Growth of Countries

  • Otoom, Mohammad Mahmood
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.220-225
    • /
    • 2021
  • Human population growth rate is an important parameter for real-world planning. Common approaches rely upon fixed parameters like human population, mortality rate, fertility rate, which is collected historically to determine the region's population growth rate. Literature does not provide a solution for areas with no historical knowledge. In such areas, machine learning can solve the problem, but a multitude of machine learning algorithm makes it difficult to determine the best approach. Further, the missing feature is a common real-world problem. Thus, it is essential to compare and select the machine learning techniques which provide the best and most robust in the presence of missing features. This study compares 17 machine learning techniques (base learners and ensemble learners) performance in predicting the human population growth rate of the country. Among the 17 machine learning techniques, random forest outperformed all the other techniques both in predictive performance and robustness towards missing features. Thus, the study successfully demonstrates and compares machine learning techniques to predict the human population growth rate in settings where historical data and feature information is not available. Further, the study provides the best machine learning algorithm for performing population growth rate prediction.

Detection of DDoS Attacks through Network Traffic Analysis and Machine Learning (네트워크 트래픽 분석과 기계학습에 의한 DDoS 공격의 탐지)

  • Lee, Cheol-Ho;Kim, Eun-Young;Oh, Hyung-Geun;Lee, Jin-Seok
    • Annual Conference of KIPS
    • /
    • 2004.05a
    • /
    • pp.1007-1010
    • /
    • 2004
  • 본 논문에서는 분산 서비스거부 공격(DDoS)이 발생할 때 네트워크 트래픽의 특성을 분석하기 위해서 트래픽 비율분석법(TRA: Traffic Rate Analysis)을 제안하고 트래픽 비율분석법을 통해서 분석된 다양한 유형의 DDoS 공격의 특성을 기계학습(Machine Learning)을 이용해서 DDoS 공격의 탐지규칙을 생성하고 그 성능을 측정하였다. 트래픽 비율분석법은 감시대상 네트워크 트래픽에서 특정한 유형의 트래픽의 발생비율을 나타내며 TCP flag rate 와 Protocol rate 로 구분된다. 트래픽 비율분석법을 적용한 결과 각각의 DDoS 공격 유형에 따라서 매우 독특한 특성을 가짐을 발견하였다. 그리고, 분석된 데이터를 대상으로 세 개의 기계학습 방법(C4.5, CN2, Na?ve Bayesian Classifier)을 이용해서 DDoS 공격의 탐지규칙을 생성하여 DDoS 공격의 탐지에 적용했다. 실험결과, 본 논문에서 제안된 트래픽 비율분석법과 기계학습을 통한 DDoS 공격의 탐지방법은 매우 높은 수준의 성능을 나타냈다.

  • PDF

Automated Classification of Unknown Smart Contracts of Ethereum Using Machine Learning (기계학습을 활용한 이더리움 미확인 스마트 컨트랙트 자동 분류 방안)

  • Lee, Donggun;Kwon, Taekyoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.6
    • /
    • pp.1319-1328
    • /
    • 2018
  • A blockchain system developed for crypto-currency has attractive characteristics, such as de-centralization, distributed ledger, and partial anonymity, making itself adopted in various fields. Among those characteristics, partial anonymity strongly assures privacy of users, but side effects such as abuse of crime are also appearing, and so countermeasures for circumventing such abuse have been studied continuously. In this paper, we propose a machine-learning based method for classifying smart contracts in Ethereum regarding their functions and design patterns and for identifying user behaviors according to them.

The Effect on Information Communication Ethics of Experience Type Smart Learning Contents Application for High School Information Security Education (고등학교 정보보안단원의 체험형 스마트교육 콘텐츠 적용 수업이 정보통신윤리의식에 미치는 영향)

  • Seo, Hyun-Jeong;Kim, Seong-Sik
    • The Journal of Korean Association of Computer Education
    • /
    • v.19 no.6
    • /
    • pp.81-89
    • /
    • 2016
  • As the social and technical circumstance changes rapidly, passive learners who were knowledge-finders not only remember and regenerate about the given information but also critically grasp the phenomena of real life, and then also it became necessary for us to help cultivate the ability to solve the problem creatively in the new form of educational goal, educational content, educational methods and evaluation, educational environment. As a result, this study analyzes the smart learning education, fit the model of smart learning education training in high school information ethics parts, design the lesson that is proposal class of 'Information protection and Security' section, and develop the teaching and experience educational contents, furthermore, It is to investigate the impact on the ethics consciousness about information communications.

Research on Equal-resolution Image Hiding Encryption Based on Image Steganography and Computational Ghost Imaging

  • Leihong Zhang;Yiqiang Zhang;Runchu Xu;Yangjun Li;Dawei Zhang
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.270-281
    • /
    • 2024
  • Information-hiding technology is introduced into an optical ghost imaging encryption scheme, which can greatly improve the security of the encryption scheme. However, in the current mainstream research on camouflage ghost imaging encryption, information hiding techniques such as digital watermarking can only hide 1/4 resolution information of a cover image, and most secret images are simple binary images. In this paper, we propose an equal-resolution image-hiding encryption scheme based on deep learning and computational ghost imaging. With the equal-resolution image steganography network based on deep learning (ERIS-Net), we can realize the hiding and extraction of equal-resolution natural images and increase the amount of encrypted information from 25% to 100% when transmitting the same size of secret data. To the best of our knowledge, this paper combines image steganography based on deep learning with optical ghost imaging encryption method for the first time. With deep learning experiments and simulation, the feasibility, security, robustness, and high encryption capacity of this scheme are verified, and a new idea for optical ghost imaging encryption is proposed.