• Title/Summary/Keyword: Information Security Learning

Search Result 1,001, Processing Time 0.023 seconds

A Framework for Development of Correctness Centered e-Learning based Curriculum in Sukkur Region

  • Ahmed Masood Ansari;Mumtaz H. Mahar
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.13-16
    • /
    • 2023
  • This study aims to explore the status of e-learning in the public sector institutes of the Sukkur region in Pakistan. A survey was conducted to collect data from students and teachers regarding their awareness, access, and use of e-learning resources. The results showed that although there is a widespread use of the internet and mobile devices for accessing information, there is a lack of awareness and access to e-learning resources. Barriers to accessing e-learning content and a lack of familiarity with e-learning content development technologies were also identified. The study concludes that there is a need for improved e-learning facilities and curriculum in the public sector institutes of the Sukkur region in Pakistan. Recommendations are provided for developing a correctness-centered e-learning based curriculum that is tailored to the specific needs of the students in the region. It is hoped that the findings of this study will inform efforts to improve the teaching and learning process in the region and provide students with greater flexibility and access to study materials.

Problems of Distance Learning in Specialists Training in Modern Terms of The Informative Society During COVID-19

  • Kuchai, Oleksandr;Yakovenko, Serhii;Zorochkina, Tetiana;Оkolnycha, Tetiana;Demchenko, Iryna;Kuchaі, Tetiana
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.143-148
    • /
    • 2021
  • The article considers the training of specialists in education in the conditions of distance learning. It is lights up the advantages of distance learning and determined the characteristic features of distance learning of students training in the implementation of these technologies in the educational process. The article focuses on the main aspects of computerization of studies as a technological breach in methodology, organization and practical realization of educational process and informative culture of a teacher. Information technologies are intensive involved in life of humanity, educational process of schools and higher educational establishments. Intercommunication is examined between the processes of informatization of the society and education.

Comparison of Machine Learning Techniques for Cyberbullying Detection on YouTube Arabic Comments

  • Alsubait, Tahani;Alfageh, Danyah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.1-5
    • /
    • 2021
  • Cyberbullying is a problem that is faced in many cultures. Due to their popularity and interactive nature, social media platforms have also been affected by cyberbullying. Social media users from Arab countries have also reported being a target of cyberbullying. Machine learning techniques have been a prominent approach used by scientists to detect and battle this phenomenon. In this paper, we compare different machine learning algorithms for their performance in cyberbullying detection based on a labeled dataset of Arabic YouTube comments. Three machine learning models are considered, namely: Multinomial Naïve Bayes (MNB), Complement Naïve Bayes (CNB), and Linear Regression (LR). In addition, we experiment with two feature extraction methods, namely: Count Vectorizer and Tfidf Vectorizer. Our results show that, using count vectroizer feature extraction, the Logistic Regression model can outperform both Multinomial and Complement Naïve Bayes models. However, when using Tfidf vectorizer feature extraction, Complement Naive Bayes model can outperform the other two models.

Evaluation of Similarity Analysis of Newspaper Article Using Natural Language Processing

  • Ayako Ohshiro;Takeo Okazaki;Takashi Kano;Shinichiro Ueda
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.1-7
    • /
    • 2024
  • Comparing text features involves evaluating the "similarity" between texts. It is crucial to use appropriate similarity measures when comparing similarities. This study utilized various techniques to assess the similarities between newspaper articles, including deep learning and a previously proposed method: a combination of Pointwise Mutual Information (PMI) and Word Pair Matching (WPM), denoted as PMI+WPM. For performance comparison, law data from medical research in Japan were utilized as validation data in evaluating the PMI+WPM method. The distribution of similarities in text data varies depending on the evaluation technique and genre, as revealed by the comparative analysis. For newspaper data, non-deep learning methods demonstrated better similarity evaluation accuracy than deep learning methods. Additionally, evaluating similarities in law data is more challenging than in newspaper articles. Despite deep learning being the prevalent method for evaluating textual similarities, this study demonstrates that non-deep learning methods can be effective regarding Japanese-based texts.

A Deep Learning Approach for Identifying User Interest from Targeted Advertising

  • Kim, Wonkyung;Lee, Kukheon;Lee, Sangjin;Jeong, Doowon
    • Journal of Information Processing Systems
    • /
    • v.18 no.2
    • /
    • pp.245-257
    • /
    • 2022
  • In the Internet of Things (IoT) era, the types of devices used by one user are becoming more diverse and the number of devices is also increasing. However, a forensic investigator is restricted to exploit or collect all the user's devices; there are legal issues (e.g., privacy, jurisdiction) and technical issues (e.g., computing resources, the increase in storage capacity). Therefore, in the digital forensics field, it has been a challenge to acquire information that remains on the devices that could not be collected, by analyzing the seized devices. In this study, we focus on the fact that multiple devices share data through account synchronization of the online platform. We propose a novel way of identifying the user's interest through analyzing the remnants of targeted advertising which is provided based on the visited websites or search terms of logged-in users. We introduce a detailed methodology to pick out the targeted advertising from cache data and infer the user's interest using deep learning. In this process, an improved learning model considering the unique characteristics of advertisement is implemented. The experimental result demonstrates that the proposed method can effectively identify the user interest even though only one device is examined.

Security tendency analysis techniques through machine learning algorithms applications in big data environments (빅데이터 환경에서 기계학습 알고리즘 응용을 통한 보안 성향 분석 기법)

  • Choi, Do-Hyeon;Park, Jung-Oh
    • Journal of Digital Convergence
    • /
    • v.13 no.9
    • /
    • pp.269-276
    • /
    • 2015
  • Recently, with the activation of the industry related to the big data, the global security companies have expanded their scopes from structured to unstructured data for the intelligent security threat monitoring and prevention, and they show the trend to utilize the technique of user's tendency analysis for security prevention. This is because the information scope that can be deducted from the existing structured data(Quantify existing available data) analysis is limited. This study is to utilize the analysis of security tendency(Items classified purpose distinction, positive, negative judgment, key analysis of keyword relevance) applying the machine learning algorithm($Na{\ddot{i}}ve$ Bayes, Decision Tree, K-nearest neighbor, Apriori) in the big data environment. Upon the capability analysis, it was confirmed that the security items and specific indexes for the decision of security tendency could be extracted from structured and unstructured data.

A Network Packet Analysis Method to Discover Malicious Activities

  • Kwon, Taewoong;Myung, Joonwoo;Lee, Jun;Kim, Kyu-il;Song, Jungsuk
    • Journal of Information Science Theory and Practice
    • /
    • v.10 no.spc
    • /
    • pp.143-153
    • /
    • 2022
  • With the development of networks and the increase in the number of network devices, the number of cyber attacks targeting them is also increasing. Since these cyber-attacks aim to steal important information and destroy systems, it is necessary to minimize social and economic damage through early detection and rapid response. Many studies using machine learning (ML) and artificial intelligence (AI) have been conducted, among which payload learning is one of the most intuitive and effective methods to detect malicious behavior. In this study, we propose a preprocessing method to maximize the performance of the model when learning the payload in term units. The proposed method constructs a high-quality learning data set by eliminating unnecessary noise (stopwords) and preserving important features in consideration of the machine language and natural language characteristics of the packet payload. Our method consists of three steps: Preserving significant special characters, Generating a stopword list, and Class label refinement. By processing packets of various and complex structures based on these three processes, it is possible to make high-quality training data that can be helpful to build high-performance ML/AI models for security monitoring. We prove the effectiveness of the proposed method by comparing the performance of the AI model to which the proposed method is applied and not. Forthermore, by evaluating the performance of the AI model applied proposed method in the real-world Security Operating Center (SOC) environment with live network traffic, we demonstrate the applicability of the our method to the real environment.

A Study on Utilizing SNS to Vitalize Smart Learning (스마트러닝 활성화를 위한 SNS활용 방안 연구)

  • Kang, Jung-Hwa
    • Journal of Digital Convergence
    • /
    • v.9 no.5
    • /
    • pp.265-274
    • /
    • 2011
  • Smart-Learning has been increasing with the growth of smartphone usage. Looking at previous research, this study established the concept of smart learning, current understanding of smart learning and the requirements for smart learning. Subsequently, It was established a concept of SNS, reviewing future education, self-directed learning by using social network, and suggests policies of vitalizing smart-learning by using SNS. In order to use SNS in smart learning, first it is proposed the need for smart learning laws and institutions, particularly with young people considering their emotions in order to expand what is proposed. secondly, the need for SNS usage to be socially and culturally relevant. third and finally, the need for strengthening information security with co-operation from the government.

An Automatically Extracting Formal Information from Unstructured Security Intelligence Report (비정형 Security Intelligence Report의 정형 정보 자동 추출)

  • Hur, Yuna;Lee, Chanhee;Kim, Gyeongmin;Jo, Jaechoon;Lim, Heuiseok
    • Journal of Digital Convergence
    • /
    • v.17 no.11
    • /
    • pp.233-240
    • /
    • 2019
  • In order to predict and respond to cyber attacks, a number of security companies quickly identify the methods, types and characteristics of attack techniques and are publishing Security Intelligence Reports(SIRs) on them. However, the SIRs distributed by each company are huge and unstructured. In this paper, we propose a framework that uses five analytic techniques to formulate a report and extract key information in order to reduce the time required to extract information on large unstructured SIRs efficiently. Since the SIRs data do not have the correct answer label, we propose four analysis techniques, Keyword Extraction, Topic Modeling, Summarization, and Document Similarity, through Unsupervised Learning. Finally, has built the data to extract threat information from SIRs, analysis applies to the Named Entity Recognition (NER) technology to recognize the words belonging to the IP, Domain/URL, Hash, Malware and determine if the word belongs to which type We propose a framework that applies a total of five analysis techniques, including technology.

Assessing the Success rate of e-Learning Systems Aadoption in Saudi Higher Education Institutions during COVID-19 Pandemic: Student Perspective

  • Aljuhani, Nouf;Matar, Zinah;Alzahrani, Asma;Saeedi, Kawther;Badri, Sahar;Fakieh, Bahjat
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.77-88
    • /
    • 2022
  • In response to the significant COVID-19 outbreak, countries have enforced the use of E-learning systems as an alternative to traditional learning; to contain the virus and minimize the infection rate while maintaining the continuity of the learning experience. However, the effective adoption of E-learning systems requires a well-understanding of critical factors, especially in times of crisis. In this regard, this study intends to assess the success of the E-learning system adoption by Higher Education Institutions (HEIs) during the crisis of COVID-19 by utilizing the Information Systems Success (ISS) model. This study's adopted model consists of nine interdependent dimensions, namely: Technical System Quality, Information Quality, Service Quality, Learner Quality, Perceived Satisfaction, Perceived Usefulness, System Use, Intention to Use, and System Success. An electronic survey was distributed among higher education students from different universities in Saudi Arabia to explore each model's dimension. Structural Equation Modeling (SEM) has been applied via SmartPLS software to test the causal relationships between dimensions. This study's main results revealed that students' Service Quality, Learner Quality, and the Intention to Use by students are essential drives for E-learning System Use during the Covid-19 pandemic. Meanwhile, the Intention to Use the system is significantly influenced by Perceived Satisfaction and Perceived Usefulness dimensions. Further, Perceived Satisfaction, Perceived Usefulness, and System Use are interdependent, and all three have a significant positive impact on E-learning System Success.