최근 몇 년간 도시교통문제의 해결책으로 부각되어온 지능형교통체계(ITS : Intelligent Transport System)의 한 분야로 첨단여행자 정보체계(ATIS : Advanced Travellers Information System)는 자동차에 장착된 항법장치(CNS)를 통해 운전자에게 원하는 목적지까지 최적경로를 제공하거나 경로에 대한 통행시간 정보를 제공 또는 예측해 주는 시스템이다. 본 연구에서는 이러한 최적경로 제공이나 통행시간 예측에 있어 좀 더 효율적인 통행시간 예측모형을 개발하고자 하였다. 현재까지의 통행시간 예측은 운전자가 통행을 시작할 때의 교통상황에 대한 정보이기 때문에 운전 중에 달라지는 교통상황을 반영할 수 없어 이로 인해 운전자가 경험하는 통행시간과 큰 차이를 발생시킬 수 있다. 본 연구에서는 이러한 불합리적인 예측시스템을 개선시킬 수 있는 예측된(predicted) 통행시간 예측 모형을 개발하고자 하였다. 이를 위해 우선 통행시간 예측모형을 특정링크에 적용시켜 모형들의 예측치와 실제 통행시간을 비교하여 교통량 흐름 패턴에 따라 어느 모형이 적합한지, 또 예측시간이 달라짐에 따라 모형들의 적합도와 첨두와 비첨두시 예측시간 간격에 따라 예측치와 실측치의 오차율을 알아보았다, 이를 통해 선정된 확률과정 모형과 칼만 필터링 예측모형을 서울시의 4개축에 대해서 다시 적용해 보았다. 그 결과 단기통행시간 예측에 있어서는 칼만필터링모형이, 장기 통행시간 예측에 있어서는 확률과정 모형이 통행시간 예측에 있어 우수한 모형임을 밝혀냈다. 마지막으로 서울시 28개 교통축의 5분 후 통행시간 예측에 칼만필터링 모형을 이용하여 오차분석을 적용하여 보았다. 그 결과 칼만필터링 모형이 신뢰할 만한 오차율을 보였다.
연속된 초음파 영상 시퀀스로부터 파노라마 영상을 만들기 위해서는 인접된 프레임 사이의 움직임을 추정해야 한다. 기존에는 고정 블록 움직임 추정 방법이 주로 사용되고 있는데 본 논문은 정확성을 높이고 계산시간을 단축하기 위해 다해상도 영상을 이용한 특징점 기반 블록 움직임 추정 방법을 제안한다. 기존의 블록 움직임 추정 방법은 규칙적으로 블록을 배치하기 때문에 추정된 움직임의 정확도를 높이기 위해서는 블록의 크기가 커지기 때문에 처리 시간이 오래 걸린다. 본 논문에서는 특징점을 중심으로 블록을 배치하여 움직임 추정의 정확도는 유지하면서 블록의 크기를 줄일 수 있었다. 어파츄어문제(aperture problem)을 줄이기 위해 코너점을 특징점으로 하였다. 움직임 추정 영역은 일정한 크기의 부영역으로 나누고, 각 부영역에서 가장 코너 강도가 큰 점을 선택하였다. 특징점을 선택하는 데는 해리스 스테판 코너검출기를 사용하였다. 코너점들이 한 곳으로 편중될 경우 블록들이 움직임 추정 영역에서 골고루 분산되지 않아 이렇게 구한 블록 움직임을 이용하여 전역 움직임을 구하면 오차가 커진다. 본 논문에서는 이러한 문제를 해결하기 위해 특징점을 선택하는 영역에 제한을 두도록 하였다. 초음파 영상에는 스펙클과 잡음이 많아 코너점을 구하기 전에 영상 평활화를 해야 한다. 계산시간을 줄이고 잡음이 감소된 영상에서 코너점을 구하기 위해 저해상도 영상에서 블록 움직임을 구한 후 점점 고해상도로 확산하는 형태로 다해상도 영상을 사용한다. 실제 세가지 종류의 초음파 영상 시퀀스에 대해 실험결과 제안된 방법은 기존의 방법에 비해 움직임 추정 오차(Displaced Frame Difference)를 평균 66.02에서 58.98로 줄이면서 계산시간은 평균 71ms에서 44ms 으로 빠르게 됨을 알 수 있었다.
본 논문에서는 대용량 시퀀스 데이터베이스에 타임 워핑을 지원하는 인덱스 기반 서브시퀀스 매칭에 관하여 논의한다. 타임 워핑은 시퀀스의 길이가 서로 다른 경우에도 유사한 패턴을 갖는 시퀀스들을 찾을 수 있도록 해준다. 최근의 연구에서 타임 워핑을 지원하는 효과적인 전체 매칭 기법을 제안된바 있다. 이 기법은 데이터 시퀀스들로부터 타임 워핑에 영향을 받지 않는 특징 벡터들의 집합을 대상으로 인덱스를 구성한다. 또한, 특징 공간상에서의 필터링을 위하여 삼각형 부등식을 만족하는 타임 워핑 거리의 하한 함수를 사용한다. 본 연구에서는 이 기존의 연구에 슬라이딩 윈도우를 기반으로 하는 접두어-질의 방법을 결합하는 새로운 기법을 제안한다. 인덱싱을 위하여 각 슬라이딩 윈도우와 대응되는 서브 시퀀스로부터 특징 벡터를 추출하고, 이 특징 벡터를 인덱싱 애트리뷰트로 사용하는 다차원 인덱스를 구성한다. 질의 처리를 위하여, 조건을 만족하는 질의 접두어들에 대한 특징 벡터들을 이용하여 다수의 인덱스 검색을 수행한다. 제안된 기법은 대용량의 데이터베이스에서도 효과적인 서브시퀀스 매칭을 지원한다. 본 연구에서는 제안된 기법이 착오 기각을 유발시키지 않음을 증명한다. 제안된 기법의 우수성을 규명하기 위하여 다양한 실험을 수행한다. 실험 결과에 따르면, 제안된 기법은 실제 S&P 500 주식 데이터와 대용량의 생성 데이터 모두에 대하여 큰 성능 개선 효과를 보이는 것으로 나타났다.
공간 해상도 1m 이하의 고해상도 원격 탐사 영상의 민간 활용이 활발해 짐에 따라, 이를 위한 전문 분야 별 영상 분석 방법의 개발 요구가 증가하고 있다. 다양한 영상분석 기법 중에, 주변 화소들간의 공간 분포 관계에 의해 특성이 결정되는 텍스처 영상의 분석은 이러한 목적을 위한 유용한 영상 분석 방법 중 하나이다. 이 연구에서는 원시 영상으로부터 GLCM 알고리즘에 의해 생성된 텍스처 영상에 대해서 방향 인자, 마스킹 커널의 크기, 변수의 종류에 따른 결과를 비교, 분석한 뒤 각각의 결과 영상의 지형공간 특성 분석의 적용성에 대하여 알아보았다. 또한 원시 영상과 텍스처 영상에서 특성 정보를 포함하는 템플레이트를 설정하고 이를 기준으로 반복적인 패턴을 자동으로 검색하는 템플레이트 정합 프로그램을 구현하여 이를 원시 영상과 텍스처 영상에 적용하였고, 처리 결과에 기초하여 향후 적용 가능성을 검토하였다. 이 연구의 결과는 일정한 패턴으로 나타나는 지구과학적인 지형 특성이나 고해상도 위성영상 정보를 이용한 인공 지형지물의 파악 및 분석에 효과적으로 적용될 수 있을 것으로 예상된다.
이미지 데이터가 증가함에 따라 효율적인 검색을 위해서 이미지 데이터를 구조화해야 할 필요성이 증가하고 있다. 이미지 데이터를 구조화하기 위한 대표적인 방법으로는 클러스터링이 있다. 그러나 기존 클러스터링 방법들은 클러스터링을 수행하기 전에 매개변수로서 클러스터의 개수를 사용자로부터 제공 받아야 되는 어려움이 있다. 본 논문에서는 클러스터의 개수를 사용자에게 제공 받지 않고 이미지 데이터를 클러스터링 하는 방안에 대해서 논의 한다. 제안하는 방안은 객체들 간의 상호 연관관계를 이용하여 매개변수 없이 데이터의 감추어진 구조나 패턴을 찾아내는 방법인 Cross-Association을 기반으로 한다. 이미지 데이터 클러스터링에 Cross-Association을 적용하기 위해서는 먼저 이미지 데이터를 그래프로 변환해야 한다. 그런 후에 생성된 그래프를 Cross-Association에 적용시키고 그 결과를 클러스터링 관점에서 해석한다. 본 논문에서는 또한 Cross-Association을 기반으로 계층적 클러스터링 하는 방법과 아웃라이어 검출 방법을 제안한다. 실험을 통해서 제안하는 방법의 우수성을 규명하고 이미지 데이터를 클러스터링 하는데 적절한 k-최근접 이웃검색에서의 k값과 더 나은 그래프 생성 방법이 무엇인지를 제시한다.
기존 멀티모달 학습 기법의 대부분은 데이터에 포함된 컨텐츠 모델링을 통한 지식획득보다는 이미지나 비디오 검색 및 태깅 등 구체적 문제 해결에 집중되어 있었다. 본 논문에서는 멀티모달 개념계층모델을 이용하여 만화 비디오로부터 컨텐츠를 학습하는 기법을 제안하고 학습된 모델로부터 등장인물의 특성을 고려한 자막을 생성하는 방법을 제시한다. 멀티모달 개념계층 모델은 개념변수층과 단어와 이미지 패치의 고차 패턴을 표현하는 멀티모달 하이퍼네트워크층으로 구성되며 이러한 모델구조를 통해 각각의 개념변수는 단어와 이미지패치 변수들의 확률분포로 표현된다. 제안하는 모델은 비디오의 자막과 화면 이미지로부터 등장 인물의 특성을 개념으로서 학습하며 이는 순차적 베이지안 학습으로 설명된다. 그리고 학습된 개념을 기반으로 텍스트 질의가 주어질 때 등장인물의 특성을 고려한 비디오 자막을 생성한다. 실험을 위해 총 268분 상영시간의 유아용 비디오 '뽀로로'로부터 등장인물들의 개념이 학습되고 학습된 모델로부터 각각의 등장인물의 특성을 고려한 자막 문장을 생성했으며 이를 기존의 멀티모달 학습모델과 비교했다. 실험결과는 멀티모달 개념계층모델은 다른 모델들에 비해 더 정확한 자막 문장이 생성됨을 보여준다. 또한 동일한 질의어에 대해서도 등장인물의 특성을 반영하는 다양한 문장이 생성됨을 확인하였다.
NAND 플래시 메모리는 특성상 덮어쓰기 연산이 불가능하기 때문에 지움 연산이 선행되어야 하므로 I/O 처리 속도가 느려지게 되어 성능저하의 원인이 된다. 또한 지움 횟수가 제한적 이어서 지움 연산이 빈번히 발생하게 되면, NAND 플래시 메모리의 수명이 줄어든다. 이러한 문제점을 해결하기 위해 NAND 플래시 메모리의 특성을 고려한 쓰기 지연 기법을 사용하면, 쓰기 횟수가 줄어들어 I/O 성능 향상에 도움이 되지만, 캐시 적중률이 낮아진다. 본 논문은 NAND 플래시 메모리 파일 시스템을 위한 더블캐시를 활용한 페이지 관리 정책을 제안한다. 더블 캐시는 실질적인 캐시인 Real Cache와 참조 페이지의 패턴을 관찰하기 위한 Ghost Cache로 구성된다. 이 정책은 Ghost Cache에서 쓰기를 지연함으로써 Real Cache에서의 적중률을 유지할 수 있고, Ghost Cache를 Dirty 리스트와 Clean 리스트로 구성하여 Dirty 페이지에 대한 탐색 시간을 줄임으로써 쓰기 연산 성능을 높인다. 기존 정책들과의 성능을 비교한 결과 제안된 정책이 기존 정책들에 비해 평균적으로 적중률은 20.57%, 그리고 I/O 성능은 20.59% 우수했고, 쓰기 횟수는 30.75% 줄었다.
Objectives: We reviewed the CAREX (CARcinogen EXposure) program designed to estimate the prevalence of occupational exposure to carcinogens and summarized the advantages and limitations of this program. Methods: All literature, including reports on CAREX and the use of CAREX, were reviewed. The keyword search term was CAREX. Additional articles were identified from references cited in articles and reviewed. Results: An exposure information system, CAREX was developed based on data from the Finnish Institute of Occupational Health of Finland and from the US. CAREX has been applied in several countries, including in the EU, in order to estimate national exposure patterns to carcinogens. The initial exposure assessment carried out through CAREX was aimed at estimating exposures over the period of 1990-1993. To estimate the number of workers exposed to carcinogens by using CAREX, reference exposure prevalence from Finland and the United States was computed, which was then reviewed and corrected by national experts. Finally the overall number of workers exposed to carcinogens can be estimated. We found that CAREX has been used in a total of 18 countries. No Asian country has used CAREX. Conclusions: CAREX can be applied not only to estimate the number of workers exposed to carcinogens in Korea, but also to identify high-risk industries with workers most exposed to carcinogens.
영상검색은 컴퓨터 비전과 데이터 마이닝 분야의 주요한 주제 중 하나이다. 현재 상용화된 영상 검색 시스템이 놀라운 성능을 보여주고 있음에도 불구하고, 폭발적으로 증가하는 웹상의 영상정보를 효율적으로 검색하기 위하여, 영상 검색 기술의 성능향상이 꾸준히 요구되고 있다. 재순위화는, 이런 요구를 만족시키기 위한 방법 중 하나로서, 영상 검색 시스템이 도출한 초기 결과를, 독자적인 알고리즘을 통해 연관도를 한 번 더 계산하고, 그에 따라 검색 결과의 성능을 향상시키는 방법이다. 지금까지 제안된 많은 재순위화 알고리즘이, 영상 검색 시스템이 영상의 시각적 정보를 사용하지 않는다는 가정하에 개발되어 왔지만, 현재 Google 과 Baidu 등 많은 상업적 영상 검색 시스템이 영상의 시각적 패턴에 대한 정보를 사용하기 시작함에 따라 이러한 가정이 어긋나고 있다. 또한, 영상 검색 시스템들이 독자적인 환경에서 개발되었기 때문에, 다수의 영상 검색 시스템의 협력으로 성능을 향상시킬 수 있을 것이라 예측되는 상황에도 불구하고, 이에 대한 연구가 부족했다. 본 논문에서는 이 두 가지 문제를 해결하기 위하여, 두 영상 검색 시스템이 사용하는 시각적 특징을 바탕으로, 두 시스템의 상보적인 정보를 이용하는 방법에 대하여 제안한다. 성능에 대한 평가는 가상 모형에서 이루어졌으며, 제안된 방법을 통하여 성능향상이 가능하다는 것을 보여준다.
서브시퀀스 매칭은 주어진 질의 시퀀스와 변화의 추세가 유사한 서브시퀀스들을 시계열 데이터베이스로부터 검색하는 연산이며, 인덱스 검색 과정과 후처리 과정으로 구성된다. 본 논문에서는 서브시퀀스 매칭을 위한 후처리 과정의 최적화 방안에 관하여 논의한다. 기존의 서브시퀀스 매칭 기법들의 후처리 과정에서 발생하는 공통적인 문제점은 인덱스 검색 과정에서 각 후보 서브시퀀스가 반환될 때마다 이들이 최종 결과에 포함되는가에 대한 여부를 판별하기 위하여 질의 시퀀스와 비교한다는 것이다. 이러한 처리 방식은 후보 서브시퀀스들을 포함하는 동일한 시퀀스를 디스크로부터 여러 번 액세스되도록 할 뿐만 아니라 동일한 후보 서브시퀀스를 질의 시퀀스와 여러 번 비교하도록 한다. 따라서 이러한 중복 작업은 서브시퀀스 매칭의 처리 성능을 심각하게 저하시키는 중요한 원인이 된다. 본 연구에서는 이러한 문제점을 해결하는 새로운 최적의 기법을 제안한다. 제안된 기법은 인덱스 검색 과정에서 반환되는 모든 후보 서브시퀀스들을 이진 탐색 트리 내에 저장하고, 인덱스 검색 과정이 완료된 후에 일괄 처리 방식으로 후처리 작업을 수행한다. 이와 같은 일괄 처리 방식을 채택함으로써 제안된 기법은 위에서 언급한 중복 작업을 완전히 제거할 수 있다. 제안된 기법의 성능 개선 효과를 검증하기 위하여 실제 주식 데이터를 위한 다양한 실험을 수행한다. 실험 결과에 의하면, 제안된 기법은 기존의 기법과 비교하여 55배에서 156배까지의 성능 개선 효과가 있는 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.