• Title/Summary/Keyword: Information Reversible

Search Result 185, Processing Time 0.025 seconds

The Structure of Reversible DTCNN (Discrete-Time Celluar Neural Networks) for Digital Image Copyright Labeling (디지털영상의 저작권보호 라벨링을 위한 Reversible DTCNN(Discrete-Time Cellular Neural Network) 구조)

  • Lee, Gye-Ho;Han, Seung-jo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.3
    • /
    • pp.532-543
    • /
    • 2003
  • In this paper, we proposed structure of a reversible discrete-time cellular neural network (DTCNN) for labeling digital images to protect copylight. First, we present the concept and the structure of reversible DTCNN, which can be used to generate 2D binary pseudo-random images sequences. We presented some, output examples of different kinds of reversible DTCNNs to show their complex behaviors. Then both the original image and the copyright label, which is often another binary image, are used to generate a binary random key image. The key image is then used to scramble the original image. Since the reversibility of a reversible DTCNN, the same reversible DTCNN can recover the copyright label from a labeled image. Due to the high speed of a DTCNN chip, our method can be used to label image sequences, e.g., video sequences, in real time. Computer simulation results are presented.

Reversible Watermarking Using Adaptive Edge-Guided Interpolation

  • Dai, Ningjie;Feng, Guorui;Zeng, Qian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.4
    • /
    • pp.856-873
    • /
    • 2011
  • Reversible watermarking is an open problem in information hiding field, with embedding the encoded bit '1' or '0' into some sensitive images, such as the law enforcement, medical records and military images. The technique can retrieve the original image without distortion, after the embedded message has been extracted. Histogram-based scheme is a remarkable breakthrough in reversible watermarking schemes, in terms of high embedding capacity and low distortion. This scheme is lack of capacity control due to the requirement for embedding large-scale data, because the largest hidden capacity is decided by the amount of pixels with the peak point. In this paper, we propose a reversible watermarking scheme to enlarge the number of pixels with the peak point as large as possible. This algorithm is based on an adaptive edge-guided interpolation, furthermore, hides messages by interpolation-error, i.e. the difference between the original and interpolated image value. Simulation results compared with other state-of-the-art reversible watermarking schemes in this paper demonstrate the validity of the proposed algorithm.

Histogram-based Reversible Data Hiding Based on Pixel Differences with Prediction and Sorting

  • Chang, Ya-Fen;Tai, Wei-Liang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3100-3116
    • /
    • 2012
  • Reversible data hiding enables the embedding of messages in a host image without any loss of host content, which is proposed for image authentication that if the watermarked image is deemed authentic, we can revert it to the exact copy of the original image before the embedding occurred. In this paper, we present an improved histogram-based reversible data hiding scheme based on prediction and sorting. A rhombus prediction is employed to explore the prediction for histogram-based embedding. Sorting the prediction has a good influence on increasing the embedding capacity. Characteristics of the pixel difference are used to achieve large hiding capacity while keeping low distortion. The proposed scheme exploits a two-stage embedding strategy to solve the problem about communicating peak points. We also present a histogram shifting technique to prevent overflow and underflow. Performance comparisons with other existing reversible data hiding schemes are provided to demonstrate the superiority of the proposed scheme.

New Parity-Preserving Reversible Logic Gate (새로운 패리티 보존형 가역 논리게이트)

  • Kim, Sung-Kyoung;Kim, Tae-Hyun;Han, Dong-Guk;Hong, Seok-Hie
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.1
    • /
    • pp.29-34
    • /
    • 2010
  • This paper proposes a new parity-preserving reversible logic gate. It is a parity-preserving reversible logic gate, that is, the party of the outputs matches that of the inputs. In recent year, reversible logic gate has emerged as one of the important approaches for power optimization with its application in low CMOS design, quantum computing and nono-technology. We show that our proposed parity-preserving reversible logic gate is much better in terms of number of reversible logic gates, number of garbage-outputs and hardware complexity with compared ti the exiting counterpart.

A Domain-independent Dual-image based Robust Reversible Watermarking

  • Guo, Xuejing;Fang, Yixiang;Wang, Junxiang;Zeng, Wenchao;Zhao, Yi;Zhang, Tianzhu;Shi, Yun-Qing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.4024-4041
    • /
    • 2022
  • Robust reversible watermarking has attracted widespread attention in the field of information hiding in recent years. It should not only have robustness against attacks in transmission but also meet the reversibility of distortion-free transmission. According to our best knowledge, the most recent robust reversible watermarking methods adopt a single image as the carrier, which might lead to low efficiency in terms of carrier utilization. To address the issue, a novel dual-image robust reversible watermarking framework is proposed in this paper to effectively utilize the correlation between both carriers (namely dual images) and thus improve the efficiency of carrier utilization. In the dual-image robust reversible watermarking framework, a two-layer robust watermarking mechanism is designed to further improve the algorithm performances, i.e., embedding capacity and robustness. In addition, an optimization model is built to determine the parameters. Finally, the proposed framework is applied in different domains (namely domain-independent), i.e., Slantlet Transform and Singular Value Decomposition domain, and Zernike moments, respectively to demonstrate its effectiveness and generality. Experimental results demonstrate the superiority of the proposed dual-image robust reversible watermarking framework.

New reversible data hiding algorithm based on difference expansion method

  • Kim, Hyoung-Joong;Sachnev, Vasiliy;Kim, Dong-Hoi
    • Journal of Broadcast Engineering
    • /
    • v.12 no.2
    • /
    • pp.112-119
    • /
    • 2007
  • Reversible data embedding theory has marked a new epoch for data hiding and information security. Being reversible, the original data and the embedded data as well should be completely restored. Difference expansion transform is a remarkable breakthrough in reversible data hiding scheme. The difference expansion method achieves high embedding capacity and keeps the distortion low. This paper shows that the difference expansion method with simplified location map, and new expandability and changeability can achieve more embedding capacity while keeping the distortion almost the same as the original expansion method.

Reversible Data Hiding Scheme Based on Maximum Histogram Gap of Image Blocks

  • Arabzadeh, Mohammad;Rahimi, Mohammad Reza
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.8
    • /
    • pp.1964-1981
    • /
    • 2012
  • In this paper a reversible data hiding scheme based on histogram shifting of host image blocks is presented. This method attempts to use full available capacity for data embedding by dividing the image into non-overlapping blocks. Applying histogram shifting to each block requires that extra information to be saved as overhead data for each block. This extra information (overhead or bookkeeping information) is used in order to extract payload and recover the block to its original state. A method to eliminate the need for this extra information is also introduced. This method uses maximum gap that exists between histogram bins for finding the value of pixels that was used for embedding in sender side. Experimental results show that the proposed method provides higher embedding capacity than the original reversible data hiding based on histogram shifting method and its improved versions in the current literature while it maintains the quality of marked image at an acceptable level.

Reversible Watermarking Method Using Optimal Histogram Pair Shifting Based on Prediction and Sorting

  • Hwang, Hee-Joon;Kim, Hyoung-Joong;Sachnev, Vasiliy;Joo, Sang-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.4
    • /
    • pp.655-670
    • /
    • 2010
  • To be reversible as a data hiding method, the original content and hidden message should be completely recovered. One important objective of this approach is to achieve high embedding capacity and low distortion. Using predicted errors is very effective for increasing the embedding capacity. Sorting the predicted errors has a good influence on decreasing distortion. In this paper, we present an improved reversible data hiding scheme using upgraded histogram shifting based on sorting the predicted errors. This new scheme is characterized by the algorithm which is able to find the optimum threshold values and manage the location map effectively. Experimental results compared with other methods are presented to demonstrate the superiority of the proposed method.

A Hybrid Inference System for Efficiently Controlling Reversible Lane (가변 차로를 효율적으로 통제하기 위한 하이브리드 추론 시스템)

  • Kwon, Hee-Chul;Yoo, Jung-Sang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.11
    • /
    • pp.19-26
    • /
    • 2012
  • Reversible lanes in urban intersections is used to efficiently control vehicles, reduce traffic congestion and increase the capacity of a roadway. But by far traffic control systems in urban intersections are simple and manually operated by police officers. In this study, we present a hybrid algorithm that intelligently resolve the moving direction of reversible lanes to efficiently manage the flow of traffic at intersection. The proposed algorithm consists of three stages:(i) fuzzy inference method to get the efficiency of moving direction, (ii) a provisional decision whether to change the reversible lane to different direction, (iii) a final evaluation criterion for changing the directions of the reversible lanes. The fuzzy inference results of efficiency are shown by using matlab application.

Reversible Data Hiding Based on Block Median Preservation and image local characteristic

  • Qu, Xiao-Chao;Kim, Hyoung-Joong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.986-989
    • /
    • 2011
  • Reversible data hiding is a technique that can embed information into cover media (image, video, voice signal) and can recover the original cover media after extracting the embedded information. In this papa, we propose a new reversible data hiding methods that based on block median preservation and the image local characteristic. By using the median value of a block, a high payload can be got and by considering the image local characteristic, a lot of distortion can be avoided and a high PSNR can be got. In the experiment, our methods can generate better result than the previous reversible data hiding methods.