• Title/Summary/Keyword: Information Finding

Search Result 3,229, Processing Time 0.031 seconds

Life in Old Age and Images of the Aged Perceived by Middle-Aged and Old-Aged Generations in Capital Region in Korea (수도권 지역 중년기 이후 세대의 노후생활 인식과 노인에 대한 인식)

  • Choi, Sung-Jae
    • 한국노년학
    • /
    • v.29 no.1
    • /
    • pp.329-352
    • /
    • 2009
  • This study examined life in old age and images of the aged perceived by middle-aged and old-aged generations through indepth interviews with 30 persons aged 40s through 80s residing in three areas (city or county) in capital region in Korea to use it as basic information in planning social welfare policy and reorganizing social services in response to population aging in capital region in Korea. In terms of economic life of the middle-aged and olde-aged generations perceived older people's opportunities for work were rarely given to the aged due to ageism and negative stereotypes of aging and the aged, and the aged tended to regard themselves less able or unable to work. In terms of social life of the aged both middle-aged and old-aged generations perceived that the frequency of social participation was low, and the daily life of the aged was found mostly aimless, unorganized and unplanned. In terms of psycho-social life of the aged both generations still felt that they were not alienated from the family, neighbors, and the society. In terms of social welfare services both generations thought the aged needed basic services such as income maintenance, health care, housing services, and particularly they felt lack of social services. The old-aged generation was willing to travel to the distance taking more than one hour to receive social services that they would need. Both the middle-aged and the old-aged agreed upon the necessity of preparation for old age and the benefits of earlier preparation, however, they said that they could not prepare for their old age due to lack of social programs to help preparation for old age and due to spending for rearing and education of their children. In terms of perceived life in old age both middle-aged and old-aged generations tended to be slightly positive, but the degree of positiveness differed between respondents from urban area and those from rural area regardless of generations. Images of the aged were perceived to be overwhelmingly negative while positive images were very few in number regardless of generations. This finding may suggests that negative stereotypes on aging and the aged are also prevalent in Korean society like in Western societies. Based on findings of this study some implications for social policies in response to population aging in capital region were suggested.

Exploring the Role of Preference Heterogeneity and Causal Attribution in Online Ratings Dynamics

  • Chu, Wujin;Roh, Minjung
    • Asia Marketing Journal
    • /
    • v.15 no.4
    • /
    • pp.61-101
    • /
    • 2014
  • This study investigates when and how disagreements in online customer ratings prompt more favorable product evaluations. Among the three metrics of volume, valence, and variance that feature in the research on online customer ratings, volume and valence have exhibited consistently positive patterns in their effects on product sales or evaluations (e.g., Dellarocas, Zhang, and Awad 2007; Liu 2006). Ratings variance, or the degree of disagreement among reviewers, however, has shown rather mixed results, with some studies reporting positive effects on product sales (e.g., Clement, Proppe, and Rott 2007) while others finding negative effects on product evaluations (e.g., Zhu and Zhang 2010). This study aims to resolve these contradictory findings by introducing preference heterogeneity as a possible moderator and causal attribution as a mediator to account for the moderating effect. The main proposition of this study is that when preference heterogeneity is perceived as high, a disagreement in ratings is attributed more to reviewers' different preferences than to unreliable product quality, which in turn prompts better quality evaluations of a product. Because disagreements mostly result from differences in reviewers' tastes or the low reliability of a product's quality (Mizerski 1982; Sen and Lerman 2007), a greater level of attribution to reviewer tastes can mitigate the negative effect of disagreement on product evaluations. Specifically, if consumers infer that reviewers' heterogeneous preferences result in subjectively different experiences and thereby highly diverse ratings, they would not disregard the overall quality of a product. However, if consumers infer that reviewers' preferences are quite homogeneous and thus the low reliability of the product quality contributes to such disagreements, they would discount the overall product quality. Therefore, consumers would respond more favorably to disagreements in ratings when preference heterogeneity is perceived as high rather than low. This study furthermore extends this prediction to the various levels of average ratings. The heuristicsystematic processing model so far indicates that the engagement in effortful systematic processing occurs only when sufficient motivation is present (Hann et al. 2007; Maheswaran and Chaiken 1991; Martin and Davies 1998). One of the key factors affecting this motivation is the aspiration level of the decision maker. Only under conditions that meet or exceed his aspiration level does he tend to engage in systematic processing (Patzelt and Shepherd 2008; Stephanous and Sage 1987). Therefore, systematic causal attribution processing regarding ratings variance is likely more activated when the average rating is high enough to meet the aspiration level than when it is too low to meet it. Considering that the interaction between ratings variance and preference heterogeneity occurs through the mediation of causal attribution, this greater activation of causal attribution in high versus low average ratings would lead to more pronounced interaction between ratings variance and preference heterogeneity in high versus low average ratings. Overall, this study proposes that the interaction between ratings variance and preference heterogeneity is more pronounced when the average rating is high as compared to when it is low. Two laboratory studies lend support to these predictions. Study 1 reveals that participants exposed to a high-preference heterogeneity book title (i.e., a novel) attributed disagreement in ratings more to reviewers' tastes, and thereby more favorably evaluated books with such ratings, compared to those exposed to a low-preference heterogeneity title (i.e., an English listening practice book). Study 2 then extended these findings to the various levels of average ratings and found that this greater preference for disagreement options under high preference heterogeneity is more pronounced when the average rating is high compared to when it is low. This study makes an important theoretical contribution to the online customer ratings literature by showing that preference heterogeneity serves as a key moderator of the effect of ratings variance on product evaluations and that causal attribution acts as a mediator of this moderation effect. A more comprehensive picture of the interplay among ratings variance, preference heterogeneity, and average ratings is also provided by revealing that the interaction between ratings variance and preference heterogeneity varies as a function of the average rating. In addition, this work provides some significant managerial implications for marketers in terms of how they manage word of mouth. Because a lack of consensus creates some uncertainty and anxiety over the given information, consumers experience a psychological burden regarding their choice of a product when ratings show disagreement. The results of this study offer a way to address this problem. By explicitly clarifying that there are many more differences in tastes among reviewers than expected, marketers can allow consumers to speculate that differing tastes of reviewers rather than an uncertain or poor product quality contribute to such conflicts in ratings. Thus, when fierce disagreements are observed in the WOM arena, marketers are advised to communicate to consumers that diverse, rather than uniform, tastes govern reviews and evaluations of products.

  • PDF

A Study on the Improvement of Flexible Working Hours (유연근로시간제 개선에 대한 연구)

  • Kwon, Yong-man;Seo, Ei-seok
    • Journal of Venture Innovation
    • /
    • v.4 no.2
    • /
    • pp.97-108
    • /
    • 2021
  • Labor contracts appear in form as an exchange relationship between labor products and wages, but since they transcend the level of simple barter, they can be economically identified as "trading" and can be identified as "rental." From a legal point of view, a legal device that legally supports and imposes binding force on commodity exchange relations is a contract. Such a labor contract led to a relationship in which wages were received and a certain amount of time was placed under the direction and supervision of the employer as a counter benefit to the receipt of wages. Since working hours are subordinate hours with one's labor under the disposition authority of the employer, long hours of work can be done for the health and safety of workers and furthermore, it can be an act that violates the value to enjoy as a human being. The reduction of working hours needs to be shortened in terms of productivity and enjoyment of workers' culture so that they can expand and reproduce, but users' corporate management labor and production activities should also be compatible compared to those pursued by capitalist countries. Working hours can be seen as individual time and time in society as a whole, and long hours of work at the individual level are reduced, which is undesirable at the individual level, but an increase in products due to an increase in production time at the social level can help social development. It is necessary to consider working hours in terms of finding the balance between these individual and social levels. If the regulation method of working hours was to regulate the total amount of working hours, flexibility and elasticity of working hours are a qualitative regulation method that allows companies to flexibly allocate and organize working hours within a certain range of up to 52 hours per week. Accordingly, it is necessary to shorten working hours, but expand and implement the flexible working hours system according to the situation of the company. To this end, it is necessary to flexibly operate the flexible working hours system, which is currently limited to six months, handle the selective working hours by agreement between employers and workers, and expand the target work of discretionary working hours according to the development of information and communication technology and new types based on the 4th industrial revolution.

Empirical Analysis of Accelerator Investment Determinants Based on Business Model Innovation Framework (비즈니스 모델 혁신 프레임워크 기반의 액셀러레이터 투자결정요인 실증 분석)

  • Jung, Mun-Su;Kim, Eun-Hee
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.1
    • /
    • pp.253-270
    • /
    • 2023
  • Research on investment determinants of accelerators, which are attracting attention by greatly improving the survival rate of startups by providing professional incubation and investment to startups at the same time, is gradually expanding. However, previous studies do not have a theoretical basis in developing investment determinants in the early stages, and they use factors of angel investors or venture capital, which are similar investors, and are still in the stage of analyzing importance and priority through empirical research. Therefore, this study verified for the first time in Korea the discrimination and effectiveness of investment determinants using accelerator investment determinants developed based on the business model innovation framework in previous studies. To this end, we first set the criteria for success and failure of startup investment based on scale-up theory and conducted a survey of 22 investment experts from 14 accelerators in Korea, and secured valid data on a total of 97 startups, including 52 successful scale-up startups and 45 failed scale-up startups, were obtained and an independent sample t-test was conducted to verify the mean difference between these two groups by accelerator investment determinants. As a result of the analysis, it was confirmed that the investment determinants of accelerators based on business model innovation framework have considerable discrimination in finding successful startups and making investment decisions. In addition, as a result of analyzing manufacturing-related startups and service-related startups considering the characteristics of innovation by industry, manufacturing-related startups differed in business model, strategy, and dynamic capability factors, while service-related startups differed in dynamic capabilities. This study has great academic implications in that it verified the practical effectiveness of accelerator investment determinants derived based on business model innovation framework for the first time in Korea, and it has high practical value in that it can make effective investments by providing theoretical grounds and detailed information for investment decisions.

  • PDF

Attitude Confidence and User Resistance for Purchasing Wearable Devices on Virtual Reality: Based on Virtual Reality Headgears (가상현실 웨어러블 기기의 구매 촉진을 위한 태도 자신감과 사용자 저항 태도: 가상현실 헤드기어를 중심으로)

  • Sohn, Bong-Jin;Park, Da-Sul;Choi, Jaewon
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.165-183
    • /
    • 2016
  • Over the past decade, there has been a rapid diffusion of technological devices and a rising number of various devices, resulting in an escalation of virtual reality technology. Technological market has rapidly been changed from smartphone to wearable devices based on virtual reality. Virtual reality can make users feel real situation through sensing interaction, voice, motion capture and so on. Facebook.com, Google, Samsung, LG, Sony and so on have investigated developing platform of virtual reality. the pricing of virtual reality devices also had decreased into 30% from their launched period. Thus market infrastructure in virtual reality have rapidly been developed to crease marketplace. However, most consumers recognize that virtual reality is not ease to purchase or use. That could not lead consumers to positive attitude for devices and purchase the related devices in the early market. Through previous studies related to virtual reality, there are few studies focusing on why the devices for virtual reality stayed in early stage in adoption & diffusion context in the market. Almost previous studies considered the reasons of hard adoption for innovative products in the viewpoints of Typology of Innovation Resistance, MIR(Management of Innovation Resistant), UTAUT & UTAUT2. However, product-based antecedents also important to increase user intention to purchase and use products in the technological market. In this study, we focus on user acceptance and resistance for increasing purchase and usage promotions of wearable devices related to virtual reality based on headgear products like Galaxy Gear. Especially, we added a variables like attitude confidence as a dimension for user resistance. The research questions of this study are follows. First, how attitude confidence and innovativeness resistance affect user intention to use? Second, What factors related to content and brand contexts can affect user intention to use? This research collected data from the participants who have experiences using virtual rality headgears aged between 20s to 50s located in South Korea. In order to collect data, this study used a pilot test and through making face-to-face interviews on three specialists, face validity and content validity were evaluated for the questionnaire validity. Cleansing the data, we dropped some outliers and data of irrelevant papers. Totally, 156 responses were used for testing the suggested hypotheses. Through collecting data, demographics and the relationships among variables were analyzed through conducting structural equation modeling by PLS. The data showed that the sex of respondents who have experience using social commerce sites (male=86(55.1%), female=70(44.9%). The ages of respondents are mostly from 20s (74.4%) to 30s (16.7%). 126 respondents (80.8%) have used virtual reality devices. The results of our model estimation are as follows. With the exception of Hypothesis 1 and 7, which deals with the two relationships between brand awareness to attitude confidence, and quality of content to perceived enjoyment, all of our hypotheses were supported. In compliance with our hypotheses, perceived ease of use (H2) and use innovativeness (H3) were supported with its positively influence for the attitude confidence. This finding indicates that the more ease of use and innovativeness for devices increased, the more users' attitude confidence increased. Perceived price (H4), enjoyment (H5), Quantity of contents (H6) significantly increase user resistance. However, perceived price positively affect user innovativeness resistance meanwhile perceived enjoyment and quantity of contents negatively affect user innovativeness resistance. In addition, aesthetic exterior (H6) was also positively associated with perceived price (p<0.01). Also projection quality (H8) can increase perceived enjoyment (p<0.05). Finally, attitude confidence (H10) increased user intention to use virtual reality devices. however user resistance (H11) negatively affect user intention to use virtual reality devices. The findings of this study show that attitude confidence and user innovativeness resistance differently influence customer intention for using virtual reality devices. There are two distinct characteristic of attitude confidence: perceived ease of use and user innovativeness. This study identified the antecedents of different roles of perceived price (aesthetic exterior) and perceived enjoyment (quality of contents & projection quality). The findings indicated that brand awareness and quality of contents for virtual reality is not formed within virtual reality market yet. Therefore, firms should developed brand awareness for their product in the virtual market to increase market share.

Strategy for Store Management Using SOM Based on RFM (RFM 기반 SOM을 이용한 매장관리 전략 도출)

  • Jeong, Yoon Jeong;Choi, Il Young;Kim, Jae Kyeong;Choi, Ju Choel
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.93-112
    • /
    • 2015
  • Depending on the change in consumer's consumption pattern, existing retail shop has evolved in hypermarket or convenience store offering grocery and daily products mostly. Therefore, it is important to maintain the inventory levels and proper product configuration for effectively utilize the limited space in the retail store and increasing sales. Accordingly, this study proposed proper product configuration and inventory level strategy based on RFM(Recency, Frequency, Monetary) model and SOM(self-organizing map) for manage the retail shop effectively. RFM model is analytic model to analyze customer behaviors based on the past customer's buying activities. And it can differentiates important customers from large data by three variables. R represents recency, which refers to the last purchase of commodities. The latest consuming customer has bigger R. F represents frequency, which refers to the number of transactions in a particular period and M represents monetary, which refers to consumption money amount in a particular period. Thus, RFM method has been known to be a very effective model for customer segmentation. In this study, using a normalized value of the RFM variables, SOM cluster analysis was performed. SOM is regarded as one of the most distinguished artificial neural network models in the unsupervised learning tool space. It is a popular tool for clustering and visualization of high dimensional data in such a way that similar items are grouped spatially close to one another. In particular, it has been successfully applied in various technical fields for finding patterns. In our research, the procedure tries to find sales patterns by analyzing product sales records with Recency, Frequency and Monetary values. And to suggest a business strategy, we conduct the decision tree based on SOM results. To validate the proposed procedure in this study, we adopted the M-mart data collected between 2014.01.01~2014.12.31. Each product get the value of R, F, M, and they are clustered by 9 using SOM. And we also performed three tests using the weekday data, weekend data, whole data in order to analyze the sales pattern change. In order to propose the strategy of each cluster, we examine the criteria of product clustering. The clusters through the SOM can be explained by the characteristics of these clusters of decision trees. As a result, we can suggest the inventory management strategy of each 9 clusters through the suggested procedures of the study. The highest of all three value(R, F, M) cluster's products need to have high level of the inventory as well as to be disposed in a place where it can be increasing customer's path. In contrast, the lowest of all three value(R, F, M) cluster's products need to have low level of inventory as well as to be disposed in a place where visibility is low. The highest R value cluster's products is usually new releases products, and need to be placed on the front of the store. And, manager should decrease inventory levels gradually in the highest F value cluster's products purchased in the past. Because, we assume that cluster has lower R value and the M value than the average value of good. And it can be deduced that product are sold poorly in recent days and total sales also will be lower than the frequency. The procedure presented in this study is expected to contribute to raising the profitability of the retail store. The paper is organized as follows. The second chapter briefly reviews the literature related to this study. The third chapter suggests procedures for research proposals, and the fourth chapter applied suggested procedure using the actual product sales data. Finally, the fifth chapter described the conclusion of the study and further research.

Smart Store in Smart City: The Development of Smart Trade Area Analysis System Based on Consumer Sentiments (Smart Store in Smart City: 소비자 감성기반 상권분석 시스템 개발)

  • Yoo, In-Jin;Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.25-52
    • /
    • 2018
  • This study performs social network analysis based on consumer sentiment related to a location in Seoul using data reflecting consumers' web search activities and emotional evaluations associated with commerce. The study focuses on large commercial districts in Seoul. In addition, to consider their various aspects, social network indexes were combined with the trading area's public data to verify factors affecting the area's sales. According to R square's change, We can see that the model has a little high R square value even though it includes only the district's public data represented by static data. However, the present study confirmed that the R square of the model combined with the network index derived from the social network analysis was even improved much more. A regression analysis of the trading area's public data showed that the five factors of 'number of market district,' 'residential area per person,' 'satisfaction of residential environment,' 'rate of change of trade,' and 'survival rate over 3 years' among twenty two variables. The study confirmed a significant influence on the sales of the trading area. According to the results, 'residential area per person' has the highest standardized beta value. Therefore, 'residential area per person' has the strongest influence on commercial sales. In addition, 'residential area per person,' 'number of market district,' and 'survival rate over 3 years' were found to have positive effects on the sales of all trading area. Thus, as the number of market districts in the trading area increases, residential area per person increases, and as the survival rate over 3 years of each store in the trading area increases, sales increase. On the other hand, 'satisfaction of residential environment' and 'rate of change of trade' were found to have a negative effect on sales. In the case of 'satisfaction of residential environment,' sales increase when the satisfaction level is low. Therefore, as consumer dissatisfaction with the residential environment increases, sales increase. The 'rate of change of trade' shows that sales increase with the decreasing acceleration of transaction frequency. According to the social network analysis, of the 25 regional trading areas in Seoul, Yangcheon-gu has the highest degree of connection. In other words, it has common sentiments with many other trading areas. On the other hand, Nowon-gu and Jungrang-gu have the lowest degree of connection. In other words, they have relatively distinct sentiments from other trading areas. The social network indexes used in the combination model are 'density of ego network,' 'degree centrality,' 'closeness centrality,' 'betweenness centrality,' and 'eigenvector centrality.' The combined model analysis confirmed that the degree centrality and eigenvector centrality of the social network index have a significant influence on sales and the highest influence in the model. 'Degree centrality' has a negative effect on the sales of the districts. This implies that sales decrease when holding various sentiments of other trading area, which conflicts with general social myths. However, this result can be interpreted to mean that if a trading area has low 'degree centrality,' it delivers unique and special sentiments to consumers. The findings of this study can also be interpreted to mean that sales can be increased if the trading area increases consumer recognition by forming a unique sentiment and city atmosphere that distinguish it from other trading areas. On the other hand, 'eigenvector centrality' has the greatest effect on sales in the combined model. In addition, the results confirmed a positive effect on sales. This finding shows that sales increase when a trading area is connected to others with stronger centrality than when it has common sentiments with others. This study can be used as an empirical basis for establishing and implementing a city and trading area strategy plan considering consumers' desired sentiments. In addition, we expect to provide entrepreneurs and potential entrepreneurs entering the trading area with sentiments possessed by those in the trading area and directions into the trading area considering the district-sentiment structure.

The Effects on CRM Performance and Relationship Quality of Successful Elements in the Establishment of Customer Relationship Management: Focused on Marketing Approach (CRM구축과정에서 마케팅요인이 관계품질과 CRM성과에 미치는 영향)

  • Jang, Hyeong-Yu
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.4
    • /
    • pp.119-155
    • /
    • 2008
  • Customer Relationship Management(CRM) has been a sustainable competitive edge of many companies. CRM analyzes customer data for designing and executing targeted marketing analysing customer behavior in order to make decisions relating to products and services including management information system. It is critical for companies to get and maintain profitable customers. How to manage relationships with customers effectively has become an important issue for both academicians and practitioners in recent years. However, the existing academic literature and the practical applications of customer relationship management(CRM) strategies have been focused on the technical process and organizational structure about the implementation of CRM. These limited focus on CRM lead to the result of numerous reports of failed implementations of various types of CRM projects. Many of these failures are also related to the absence of marketing approach. Identifying successful factors and outcomes focused on marketing concept before introducing a CRM project are a pre-implementation requirements. Many researchers have attempted to find the factors that contribute to the success of CRM. However, these research have some limitations in terms of marketing approach without explaining how the marketing based factors contribute to the CRM success. An understanding of how to manage relationship with crucial customers effectively based marketing approach has become an important topic for both academicians and practitioners. However, the existing papers did not provide a clear antecedent and outcomes factors focused on marketing approach. This paper attempt to validate whether or not such various marketing factors would impact on relational quality and CRM performance in terms of marketing oriented perceptivity. More specifically, marketing oriented factors involving market orientation, customer orientation, customer information orientation, and core customer orientation can influence relationship quality(satisfaction and trust) and CRM outcome(customer retention and customer share). Another major goals of this research are to identify the effect of relationship quality on CRM outcomes consisted of customer retention and share to show the relationship strength between two factors. Based on meta analysis for conventional studies, I can construct the following research model. An empirical study was undertaken to test the hypotheses with data from various companies. Multiple regression analysis and t-test were employed to test the hypotheses. The reliability and validity of our measurements were tested by using Cronbach's alpha coefficient and principal factor analysis respectively, and seven hypotheses were tested through performing correlation test and multiple regression analysis. The first key outcome is a theoretically and empirically sound CRM factors(marketing orientation, customer orientation, customer information orientation, and core customer orientation.) in the perceptive of marketing. The intensification of ${\beta}$coefficient among antecedents factors in terms of marketing was not same. In particular, The effects on customer trust of marketing based CRM antecedents were significantly confirmed excluding core customer orientation. It was notable that the direct effects of core customer orientation on customer trust were not exist. This means that customer trust which is firmly formed by long term tasks will not be directly linked to the core customer orientation. the enduring management concerned with this interactions is probably more important for the successful implementation of CRM. The second key result is that the implementation and operation of successful CRM process in terms of marketing approach have a strong positive association with both relationship quality(customer trust/customer satisfaction) and CRM performance(customer retention and customer possession). The final key fact that relationship quality has a strong positive effect on customer retention and customer share confirms that improvements in customer satisfaction and trust improve accessibility to customers, provide more consistent service and ensure value-for-money within the front office which result in growth of customer retention and customer share. Particularly, customer satisfaction and trust which is main components of relationship quality are found to be positively related to the customer retention and customer share. Interactive managements of these main variables play key roles in connecting the successful antecedent of CRM with final outcome involving customer retention and share. Based on research results, This paper suggest managerial implications concerned with constructions and executions of CRM focusing on the marketing perceptivity. I can conclude in general the CRM can be achieved by the recognition of antecedents and outcomes based on marketing concept. The implementation of marketing concept oriented CRM will be connected with finding out about customers' purchasing habits, opinions and preferences profiling individuals and groups to market more effectively and increase sales changing the way you operate to improve customer service and marketing. Benefiting from CRM is not just a question of investing the right software, but adapt CRM users to the concept of marketing including marketing orientation, customer orientation, and customer information orientation. No one deny that CRM is a process or methodology used to develop stronger relationships being composed of many technological components, but thinking about CRM in primarily technological terms is a big mistake. We can infer from this paper that the more useful way to think and implement about CRM is as a process that will help bring together lots of pieces of marketing concept about customers, marketing effectiveness, and market trends. Finally, a real situation we conducted our research may enable academics and practitioners to understand the antecedents and outcomes in the perceptive of marketing more clearly.

  • PDF

An Empirical Study on the Influencing Factors for Big Data Intented Adoption: Focusing on the Strategic Value Recognition and TOE Framework (빅데이터 도입의도에 미치는 영향요인에 관한 연구: 전략적 가치인식과 TOE(Technology Organizational Environment) Framework을 중심으로)

  • Ka, Hoi-Kwang;Kim, Jin-soo
    • Asia pacific journal of information systems
    • /
    • v.24 no.4
    • /
    • pp.443-472
    • /
    • 2014
  • To survive in the global competitive environment, enterprise should be able to solve various problems and find the optimal solution effectively. The big-data is being perceived as a tool for solving enterprise problems effectively and improve competitiveness with its' various problem solving and advanced predictive capabilities. Due to its remarkable performance, the implementation of big data systems has been increased through many enterprises around the world. Currently the big-data is called the 'crude oil' of the 21st century and is expected to provide competitive superiority. The reason why the big data is in the limelight is because while the conventional IT technology has been falling behind much in its possibility level, the big data has gone beyond the technological possibility and has the advantage of being utilized to create new values such as business optimization and new business creation through analysis of big data. Since the big data has been introduced too hastily without considering the strategic value deduction and achievement obtained through the big data, however, there are difficulties in the strategic value deduction and data utilization that can be gained through big data. According to the survey result of 1,800 IT professionals from 18 countries world wide, the percentage of the corporation where the big data is being utilized well was only 28%, and many of them responded that they are having difficulties in strategic value deduction and operation through big data. The strategic value should be deducted and environment phases like corporate internal and external related regulations and systems should be considered in order to introduce big data, but these factors were not well being reflected. The cause of the failure turned out to be that the big data was introduced by way of the IT trend and surrounding environment, but it was introduced hastily in the situation where the introduction condition was not well arranged. The strategic value which can be obtained through big data should be clearly comprehended and systematic environment analysis is very important about applicability in order to introduce successful big data, but since the corporations are considering only partial achievements and technological phases that can be obtained through big data, the successful introduction is not being made. Previous study shows that most of big data researches are focused on big data concept, cases, and practical suggestions without empirical study. The purpose of this study is provide the theoretically and practically useful implementation framework and strategies of big data systems with conducting comprehensive literature review, finding influencing factors for successful big data systems implementation, and analysing empirical models. To do this, the elements which can affect the introduction intention of big data were deducted by reviewing the information system's successful factors, strategic value perception factors, considering factors for the information system introduction environment and big data related literature in order to comprehend the effect factors when the corporations introduce big data and structured questionnaire was developed. After that, the questionnaire and the statistical analysis were performed with the people in charge of the big data inside the corporations as objects. According to the statistical analysis, it was shown that the strategic value perception factor and the inside-industry environmental factors affected positively the introduction intention of big data. The theoretical, practical and political implications deducted from the study result is as follows. The frist theoretical implication is that this study has proposed theoretically effect factors which affect the introduction intention of big data by reviewing the strategic value perception and environmental factors and big data related precedent studies and proposed the variables and measurement items which were analyzed empirically and verified. This study has meaning in that it has measured the influence of each variable on the introduction intention by verifying the relationship between the independent variables and the dependent variables through structural equation model. Second, this study has defined the independent variable(strategic value perception, environment), dependent variable(introduction intention) and regulatory variable(type of business and corporate size) about big data introduction intention and has arranged theoretical base in studying big data related field empirically afterwards by developing measurement items which has obtained credibility and validity. Third, by verifying the strategic value perception factors and the significance about environmental factors proposed in the conventional precedent studies, this study will be able to give aid to the afterwards empirical study about effect factors on big data introduction. The operational implications are as follows. First, this study has arranged the empirical study base about big data field by investigating the cause and effect relationship about the influence of the strategic value perception factor and environmental factor on the introduction intention and proposing the measurement items which has obtained the justice, credibility and validity etc. Second, this study has proposed the study result that the strategic value perception factor affects positively the big data introduction intention and it has meaning in that the importance of the strategic value perception has been presented. Third, the study has proposed that the corporation which introduces big data should consider the big data introduction through precise analysis about industry's internal environment. Fourth, this study has proposed the point that the size and type of business of the corresponding corporation should be considered in introducing the big data by presenting the difference of the effect factors of big data introduction depending on the size and type of business of the corporation. The political implications are as follows. First, variety of utilization of big data is needed. The strategic value that big data has can be accessed in various ways in the product, service field, productivity field, decision making field etc and can be utilized in all the business fields based on that, but the parts that main domestic corporations are considering are limited to some parts of the products and service fields. Accordingly, in introducing big data, reviewing the phase about utilization in detail and design the big data system in a form which can maximize the utilization rate will be necessary. Second, the study is proposing the burden of the cost of the system introduction, difficulty in utilization in the system and lack of credibility in the supply corporations etc in the big data introduction phase by corporations. Since the world IT corporations are predominating the big data market, the big data introduction of domestic corporations can not but to be dependent on the foreign corporations. When considering that fact, that our country does not have global IT corporations even though it is world powerful IT country, the big data can be thought to be the chance to rear world level corporations. Accordingly, the government shall need to rear star corporations through active political support. Third, the corporations' internal and external professional manpower for the big data introduction and operation lacks. Big data is a system where how valuable data can be deducted utilizing data is more important than the system construction itself. For this, talent who are equipped with academic knowledge and experience in various fields like IT, statistics, strategy and management etc and manpower training should be implemented through systematic education for these talents. This study has arranged theoretical base for empirical studies about big data related fields by comprehending the main variables which affect the big data introduction intention and verifying them and is expected to be able to propose useful guidelines for the corporations and policy developers who are considering big data implementationby analyzing empirically that theoretical base.

Transfer Learning using Multiple ConvNet Layers Activation Features with Principal Component Analysis for Image Classification (전이학습 기반 다중 컨볼류션 신경망 레이어의 활성화 특징과 주성분 분석을 이용한 이미지 분류 방법)

  • Byambajav, Batkhuu;Alikhanov, Jumabek;Fang, Yang;Ko, Seunghyun;Jo, Geun Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.205-225
    • /
    • 2018
  • Convolutional Neural Network (ConvNet) is one class of the powerful Deep Neural Network that can analyze and learn hierarchies of visual features. Originally, first neural network (Neocognitron) was introduced in the 80s. At that time, the neural network was not broadly used in both industry and academic field by cause of large-scale dataset shortage and low computational power. However, after a few decades later in 2012, Krizhevsky made a breakthrough on ILSVRC-12 visual recognition competition using Convolutional Neural Network. That breakthrough revived people interest in the neural network. The success of Convolutional Neural Network is achieved with two main factors. First of them is the emergence of advanced hardware (GPUs) for sufficient parallel computation. Second is the availability of large-scale datasets such as ImageNet (ILSVRC) dataset for training. Unfortunately, many new domains are bottlenecked by these factors. For most domains, it is difficult and requires lots of effort to gather large-scale dataset to train a ConvNet. Moreover, even if we have a large-scale dataset, training ConvNet from scratch is required expensive resource and time-consuming. These two obstacles can be solved by using transfer learning. Transfer learning is a method for transferring the knowledge from a source domain to new domain. There are two major Transfer learning cases. First one is ConvNet as fixed feature extractor, and the second one is Fine-tune the ConvNet on a new dataset. In the first case, using pre-trained ConvNet (such as on ImageNet) to compute feed-forward activations of the image into the ConvNet and extract activation features from specific layers. In the second case, replacing and retraining the ConvNet classifier on the new dataset, then fine-tune the weights of the pre-trained network with the backpropagation. In this paper, we focus on using multiple ConvNet layers as a fixed feature extractor only. However, applying features with high dimensional complexity that is directly extracted from multiple ConvNet layers is still a challenging problem. We observe that features extracted from multiple ConvNet layers address the different characteristics of the image which means better representation could be obtained by finding the optimal combination of multiple ConvNet layers. Based on that observation, we propose to employ multiple ConvNet layer representations for transfer learning instead of a single ConvNet layer representation. Overall, our primary pipeline has three steps. Firstly, images from target task are given as input to ConvNet, then that image will be feed-forwarded into pre-trained AlexNet, and the activation features from three fully connected convolutional layers are extracted. Secondly, activation features of three ConvNet layers are concatenated to obtain multiple ConvNet layers representation because it will gain more information about an image. When three fully connected layer features concatenated, the occurring image representation would have 9192 (4096+4096+1000) dimension features. However, features extracted from multiple ConvNet layers are redundant and noisy since they are extracted from the same ConvNet. Thus, a third step, we will use Principal Component Analysis (PCA) to select salient features before the training phase. When salient features are obtained, the classifier can classify image more accurately, and the performance of transfer learning can be improved. To evaluate proposed method, experiments are conducted in three standard datasets (Caltech-256, VOC07, and SUN397) to compare multiple ConvNet layer representations against single ConvNet layer representation by using PCA for feature selection and dimension reduction. Our experiments demonstrated the importance of feature selection for multiple ConvNet layer representation. Moreover, our proposed approach achieved 75.6% accuracy compared to 73.9% accuracy achieved by FC7 layer on the Caltech-256 dataset, 73.1% accuracy compared to 69.2% accuracy achieved by FC8 layer on the VOC07 dataset, 52.2% accuracy compared to 48.7% accuracy achieved by FC7 layer on the SUN397 dataset. We also showed that our proposed approach achieved superior performance, 2.8%, 2.1% and 3.1% accuracy improvement on Caltech-256, VOC07, and SUN397 dataset respectively compare to existing work.