• Title/Summary/Keyword: Information Engineering Methodology

Search Result 1,690, Processing Time 0.035 seconds

Conversion of Camera Lens Distortions between Photogrammetry and Computer Vision (사진측량과 컴퓨터비전 간의 카메라 렌즈왜곡 변환)

  • Hong, Song Pyo;Choi, Han Seung;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.4
    • /
    • pp.267-277
    • /
    • 2019
  • Photogrammetry and computer vision are identical in determining the three-dimensional coordinates of images taken with a camera, but the two fields are not directly compatible with each other due to differences in camera lens distortion modeling methods and camera coordinate systems. In general, data processing of drone images is performed by bundle block adjustments using computer vision-based software, and then the plotting of the image is performed by photogrammetry-based software for mapping. In this case, we are faced with the problem of converting the model of camera lens distortions into the formula used in photogrammetry. Therefore, this study described the differences between the coordinate systems and lens distortion models used in photogrammetry and computer vision, and proposed a methodology for converting them. In order to verify the conversion formula of the camera lens distortion models, first, lens distortions were added to the virtual coordinates without lens distortions by using the computer vision-based lens distortion models. Then, the distortion coefficients were determined using photogrammetry-based lens distortion models, and the lens distortions were removed from the photo coordinates and compared with the virtual coordinates without the original distortions. The results showed that the root mean square distance was good within 0.5 pixels. In addition, epipolar images were generated to determine the accuracy by applying lens distortion coefficients for photogrammetry. The calculated root mean square error of y-parallax was found to be within 0.3 pixels.

A Study on Automatic Calculation of Earth-volume Using 3D Model of B-Rep Solid Structure (B-Rep Solid 구조의 3차원 모델을 이용한 토공량 자동 산정에 관한 연구)

  • Kim, Jong Nam;Um, Dae Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.5
    • /
    • pp.403-412
    • /
    • 2022
  • As the 4th industrial revolution is in full swing and next-generation ICT(Information & Communications Technology) convergence technology is being developed, various smart construction technologies are being rapidly introduced in the construction field to respond to technological changes. In particular, since the earth-volume calculation process for site design accounts for a large part of the design cost at the construction site, related researches are being actively conducted to improve the efficiency of the process and accurately calculate the earth-volume. The purpose of this study is to present a method for quickly constructing the topography of a construction site in 3D and efficiently calculating earth-volume using the results. For this purpose, the construction site was constructed as a 3D realistic model using large-scale aerial photos obtained from UAV(Unmanned Aerial Vehicle). At this time, since the constructed 3D realistic model has a surface model structure in which volume calculation is impossible, the structure was converted into a 3D solid model to enable volume calculation. And we devised a methodology to calculate earth-volume based on CAD(Computer-Aided Design and Drafting) using the converted solid model. Automatically calculating earth-volume from the solid model by applying the method. As a result, It was possible to confirm a relative deviation of 1.52% from the calculated earth-volume from the existing survey results. In addition, as a result of comparative analysis of the process time required for each method, it was confirmed that the time required is reduced of 60%. The technique presented in this study is expected to be utilized as a technology for smart construction management, such as periodic site monitoring throughout the entire construction process, as well as cost reduction for earth-volume calculation.

Risk Assessment of Arsenic-Contaminated Groundwater in Multiple Scenarios in a Rural Area of Gyeongnam Province, Korea (경남 농촌 지역 비소 오염 지하수의 시나리오별 위해성 평가)

  • Oh, Serim;Lee, Jin-Yong;Moon, Sang-Ho;Jang, Jiwook;Jeong, Eunju
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.437-448
    • /
    • 2022
  • This work aims to assess the threat to human health of hazardous materials in groundwater that is used domestically and for drinking. Two distinct sub-assessments are considered: cancer and non-cancer risk. The studied groundwater is in an agricultural area of Gyeongnam Province, Korea, and is contaminated by arsenic at a mean level of 16.27 ㎍/L, far greater than the WHO guideline (10 ㎍/L for drinking water). We collected groundwater data from the National Groundwater Information Center (gims.go.kr) and assessed the risk to human health following the methodology of the United States Environmental Protection Agency. We considered three exposure scenarios: domestic use (scenario 1) and drinking use with different doses (scenarios 2 and 3). Scenario 1 had a median hazard quotient (HQ) of 0.77 and a cancer risk (CR) of 0.013. Scenario 2 had a median HQ of 0.08 and a CR of 3.69 × 10-5, and the values for scenario 3 were 0.11 and 4.82 × 10-5, respectively. Scenario 1 is likely the most hazardous to human health. Further study of the origin of arsenic in groundwater in the study area is required, as are remedial measures to mitigate its health effects.

A Study on Water-level Rise Behavior Curve using Historical Record (기왕자료를 이용한 수위상승거동곡선에 관한 연구)

  • Kwak, Jaewon;Kim, Gilho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.601-610
    • /
    • 2023
  • The comprehension of water-level behavior in rivers is essential for effective flood and river environmental management. The objective of this study is to propose a methodology that can be used by field engineers engaged in actual practice, to readily identify the characteristics of water-level behavior during flood events. To this end, a total of 45 historical water-level records from 2010 to 2022 year, which provide flood information for the flood vulnerable districts of the Han River, were obtained. A Water-level Rise Behavior Curve (WRBC) was developed and suggested to quantify the amount of water-level rise per unit time during flood. As a result, the water-level rises by more than 80% of the total rise within the first 6.2 hours, followed by a gradual rise. The time required to achieve a particular equilibrium varied depending on the area and runoff characteristics of the upstream. Furthermore, the study revealed that the WRBC provides a statistical representation of the water-level rise trend during floods, and can be effectively utilized for flood mitigation measures in waterfront spaces and irrigation facilities.

Analysis of articles on water quality accidents in the water distribution networks using big data topic modelling and sentiment analysis (빅데이터 토픽모델링과 감성분석을 활용한 물공급과정에서의 수질사고 기사 분석)

  • Hong, Sung-Jin;Yoo, Do-Guen
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1235-1249
    • /
    • 2022
  • This study applied the web crawling technique for extracting big data news on water quality accidents in the water supply system and presented the algorithm in a procedural way to obtain accurate water quality accident news. In addition, in the case of a large-scale water quality accident, development patterns such as accident recognition, accident spread, accident response, and accident resolution appear according to the occurrence of an accident. That is, the analysis of the development of water quality accidents through key keywords and sentiment analysis for each stage was carried out in detail based on case studies, and the meanings were analyzed and derived. The proposed methodology was applied to the larval accident period of Incheon Metropolitan City in 2020 and analyzed. As a result, in a situation where the disclosure of information that directly affects consumers, such as water quality accidents, is restricted, the tone of news articles and media reports about water quality accidents with long-term damage in the event of an accident and the degree of consumer pride clearly change over time. could check This suggests the need to prepare consumer-centered policies to increase consumer positivity, although rapid restoration of facilities is very important for the development of water quality accidents from the supplier's point of view.

A Study on the Development of Interior Design Service for Autonomous Vehicles - Focusing on STEEP analysis Techniques - (자율주행차 인테리어 디자인서비스 개발연구 - STEEP 분석 기법을 적용한 사례 중심으로 -)

  • Kang, Taeho;Cho, Jounghyung
    • Journal of Service Research and Studies
    • /
    • v.11 no.3
    • /
    • pp.43-54
    • /
    • 2021
  • This study focused on indoor spaces and convenience devices among vehicle interior designs suitable for the autonomous driving era, and presented an interior design model for future automobiles by applying the STEEP analysis method. The service design methodology is applied to deal with changes in display devices installed for the purpose of rearranging layouts and providing driver-centered information. Changes in types and installation locations of displays for various purposes such as connected and infotainment are expected. In particular, through this analysis, trends and experiences through indoor interior research in future self-driving cars will be studied, and subsequent studies will be used as basic data for actual development and application. Key drivers were extracted after deriving future trends linking the research project conducted in five stages to STEEP and consulting experts through FGI. Through this, it was later presented as a direction for indoor design. Through user-centered participatory design methods, emotional keyword derivation methods were used, summarized the derived drivers in five major trends in the future society, and each derived drivers were grouped to consider the relevant technology fields, and added elements to the autonomous driving level. This is an indoor ray viewed from the perspective of various social issues as well as personal tendencies in the future self-driving car industry.

Process Optimization for the Industrialization of Transparent Conducting Film (투명 전도막의 산업화를 위한 공정 최적화)

  • Nam, Hyeon-bin;Choi, Yo-seok;Kim, In-su;Kim, Gyung-jun;Park, Seong-su;Lee, Ja Hyun
    • Industry Promotion Research
    • /
    • v.9 no.1
    • /
    • pp.21-29
    • /
    • 2024
  • In the rapidly advancing information society, electronic devices, including smartphones and tablets, are increasingly digitized and equipped with high-performance features such as flexible displays. This study focused on optimizing the manufacturing process for Transparent Conductive Films (TCF) by using the cost-effective conductive polymer PEDOT and transparent substrate PET as alternatives to expensive materials in flexible display technology. The variables considered are production speed (m/min), coating maximum temperature (℃), and PEDOT supply speed (rpm), with surface resistivity (Ω/□) as the response parameter, using Response Surface Methodology (RSM). Optimization results indicate the ideal conditions for production: a speed of 22.16 m/min, coating temperature of 125.28℃, and PEDOT supply at 522.79 rpm. Statistical analysis validates the reliability of the results (F value: 18.37, P-value: < 0.0001, R2: 0.9430). Under optimal conditions, the predicted surface resistivity is 145.75 Ω/□, closely aligned with the experimental value of 142.97 Ω/□. Applying these findings to mass production processes is expected to enhance production yields and decrease defect rates compared to current practices. This research provides valuable insights for the advancement of flexible display manufacturing.

A Comparative Study on Mapping and Filtering Radii of Local Climate Zone in Changwon city using WUDAPT Protocol (WUDAPT 절차를 활용한 창원시의 국지기후대 제작과 필터링 반경에 따른 비교 연구)

  • Tae-Gyeong KIM;Kyung-Hun PARK;Bong-Geun SONG;Seoung-Hyeon KIM;Da-Eun JEONG;Geon-Ung PARK
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.2
    • /
    • pp.78-95
    • /
    • 2024
  • For the establishment and comparison of environmental plans across various domains, considering climate change and urban issues, it is crucial to build spatial data at the regional scale classified with consistent criteria. This study mapping the Local Climate Zone (LCZ) of Changwon City, where active climate and environmental research is being conducted, using the protocol suggested by the World Urban Database and Access Portal Tools (WUDAPT). Additionally, to address the fragmentation issue where some grids are classified with different climate characteristics despite being in regions with homogeneous climate traits, a filtering technique was applied, and the LCZ classification characteristics were compared according to the filtering radius. Using satellite images, ground reference data, and the supervised classification machine learning technique Random Forest, classification maps without filtering and with filtering radii of 1, 2, and 3 were produced, and their accuracies were compared. Furthermore, to compare the LCZ classification characteristics according to building types in urban areas, an urban form index used in GIS-based classification methodology was created and compared with the ranges suggested in previous studies. As a result, the overall accuracy was highest when the filtering radius was 1. When comparing the urban form index, the differences between LCZ types were minimal, and most satisfied the ranges of previous studies. However, the study identified a limitation in reflecting the height information of buildings, and it is believed that adding data to complement this would yield results with higher accuracy. The findings of this study can be used as reference material for creating fundamental spatial data for environmental research related to urban climates in South Korea.

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.

Soil Loss and Pollutant Load Estimation in Sacheon River Watershed using a Geographic Information System (GIS를 이용한 동해안 하천유역의 토양유실량과 오염부하량 평가 -사천천을 중심으로-)

  • Cho, Jae-Heon;Yeon, Je-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1331-1343
    • /
    • 2000
  • Through the integration of USLE and GIS, the methodology to estimate the soil loss was developed, and applicated to the Sacheon river in Gangrung. Using GIS, spatial analysis such as watershed boundary determination, flow routing. slope steepness calculation was done. Spatial information from the GIS application was given for each grid. With soil and land use map, information about soil classification and land use was given for each grid too. Based upon these data, thematic maps about the factors of USLE were made. We estimated the soil loss by overlaying the thematic maps. In this manner, we can assess the degree of soil loss for each grid using GIS. Annual average soil loss of Sacheon river watershed is 1.36 ton/ha/yr. Soil loss in forest, dry field, and paddy field is 0.15 ton/ha/yr, 27.04 ton/ha/yr, 0.78 ton/ha/yr respectively. The area of dry field, which is 4% of total area, is $2.4km^2$. But total soil loss of dry field is 6561 ton/yr, and it occupies 84.9 % of total soil loss eroded in Sacheon river watershed. Comparing with the 11.2 ton/ha/yr of an average soil loss tolerance for cropland, provision for the soil loss in dry field is necessary. Run-off and water quality of Sacheon river were measured two times in flood season: from July 24, 1998 to July 28 and from September 29 to October 1. As the run-off of the river increased, SS, TN, TP concentrations and pollutant loadings increased. SS, TN, TP loads of Sacheon river discharged during the 2 heavy rains were 21%, 39%, and 19% of the total pollutant loadings generated in the Sacheon river watershed for one year. We can see that much pollutants are discharged in short period of flood season.

  • PDF