본 논문에서는 질의로 주어진 주제를 깊이 있게 다루는 블로그 검색을 위한 위키피디아 기반 질의 확장 방법을 제안한다. 제안된 방법은 질의와 연관된 위키피디아 문서를 질의 확장에 사용한다. 실험을 위해 대규모 블로그 실험 데이터인 TREC Blogs08 collection과 영문 위키피디아 데이터를 사용하였다. 실험 결과 제안된 방법은 기존의 블로그 포스트 기반 질의 확장 방법에 비해 MAP을 비롯한 검색 성능을 콘 폭으로 향상시켰다.
추천시스템은 사용자가 아이템들에 남긴 과거 피드백을 바탕으로 사용자가 선호할 법할 아이템을 추천한다. 추천시스템에서 사용자의 선호도는 단일클래스 세팅과 다중클래스 세팅 두 가지로 표현 할 수 있다. 우리는 추천시스템을 위해 제안된 지식증류기법인 Ranking Distillation 을 다중클래스 세팅에서 실험하여, 증류된 지식을 통한 작은 모델 학습이 효과적인지에 대해 알아보고자 한다.
최근 딥러닝 기반의 얼굴 초해상화 연구는 일반적인 영상에 대한 초해상화 연구와 달리 인간의 얼굴이 가지는 구조적 혹은 의미론적인 특성을 반영한 안면 랜드마크 정보, 주요 영역 딕셔너리와 같은 사전 및 참조 정보를 사용하여 우수한 초해상화 결과를 보였다. 그러나 얼굴에 특화된 사전 정보를 사용할 시 추가적인 처리 소요 시간과 메모리를 요구하는 단점이 존재한다. 본 논문은 앞서 언급한 한계점을 극복하고자 지식 증류 기법을 활용한 효율적인 초해상화 모델을 제안한다. 주요 얼굴 영역 기반의 딕셔너리 정보를 사용하는 선생 모델에 지식 증류 기법을 적용하여 추론 시 랜드마크 정보와 부가적인 딕셔너리 사용이 필요 없는 학생 모델을 구축하였다. 제안하는 학생 모델은 특징맵 기반의 적대적 지식 증류를 통해 얼굴 주요 영역 딕셔너리를 가지고 있는 선생 모델로부터 학습을 진행하였다. 본 논문은 제안하는 학생 모델의 실험 결과를 통해 정량 및 정성적으로 우수함을 보이며 선생 모델의 연산량에 비해 90% 이상 절감되는 효율성을 증명한다.
의미적 정보까지 학생 모델에게 학습시키기 위한 지식 증류 기법은 많이 논의되어 왔다. 그러나 학생 모델의 용량이 교사 모델의 용량에 비해 부족함에서 발생하는 의미적 정보 손실에 대한 논의는 아직 진행되지 않았다. 본 논문에서는 의미적 정보의 최소 단위를 교사 모델의 레이어로 설정하여 학생 모델이 지식 증류를 시작하기 전 최적의 지식 증류 대상을 설정하는 최적 은닉층 선정 알고리즘을 제시한다.
In-service diagnoses of pipeline facilities are important for a systematic maintenance of them. Field applications by using sealed gamma-ray sources $(^{60}Co,\;^{137}Cs)$ were performed to identify the heterogeneous zone in the pipelines of a distillation tower and a flare stack respectively. From the results, the heterogeneous zones in the pipelines were successfully identified. In the case of the pipeline connected to the distillation tower, a vapor pocket was detected in the fluid under hydrodynamic conditions, which could explain the reason for a decrease of the flow rate. In another case, an area with some amount of catalyst deposits was found at the bottom of the gas pipeline which was connected to the flare stack. And these findings provided important information for the process operators. Diagnosis technique by using gamma radiation sources has been proven to be an effective and reliable method for providing information on a media distribution in a facility.
In this paper, we propose a novel visualization technique to explain the predictions of deep neural networks. We use knowledge distillation (KD) to identify the interior of a black-box model for which we know only inputs and outputs. The information of the black box model will be transferred to a white box model that we aim to create through the KD. The white box model will learn the representation of the black-box model. Second, the white-box model generates attention maps for each of its layers using Grad-CAM. Then we combine the attention maps of different layers using the pixel-wise summation to generate a final saliency map that contains information from all layers of the model. The experiments show that the proposed technique found important layers and explained which part of the input is important. Saliency maps generated by the proposed technique performed better than those of Grad-CAM in deletion game.
This study was performed numerical analysis in order to analyze liquid film flow of heat exchanger tube arrangement and configuration of evaporative multi effect distillation system using medium-temperature. Simulation was accomplished the two-dimensional calculations using commercial analyses program FLUENT based on the FVM(finite volume method). Fresh water generator of this study used Shell & Tubes heat exchanger with Cu_Ni tube, configuration of tube used bare tube and corrugated tube, and arrangement of tube used in-line array and staggered array. Performance of heat exchanger through the formation of liquid film was compared and analyzed. Liquid film flow occurred that falling on heat exchanger tube wall. Result of simulation showed that liquid film thickness of in-line arrangement was found 0.57mm with bare tube and 0.67mm with corrugated tube, respectively. And liquid film thickness of staggered arrangement was found 0.39mm with bare tubes and 0.62mm with corrugated tubes, respectively. Liquid film thickness of corrugated tube showed thicker than bare tube, but heat transfer rates of corrugated tube showed higher than bare tube. The reason was considered that surface area of corrugated tube was wider than bare tube. And liquid film thickness of staggered arrangement showed thinner than in-line arrangement, so thermal performance of staggered arrangement showed higher than in-line arrangement.
3D 물체검출은 대체로 자동차, 버스, 사람, 가구 등과 같은 비교적 크기가 큰 데이터를 검출하는 것을 목표로 두어 작은 객체 검출에는 취약하다. 또한, 임베디드 기기와 같은 자원이 제한적인 환경에서는 방대한 연산량 때문에 모델의 적용이 어렵다. 본 논문에서는 1개의 레이어만을 사용하여 로컬 특징에 중점을 두어 작은 객체 검출의 정확도를 높였으며, 제안한 사전 학습된 큰 네트워크에서 작은 네트워크로의 지식 증류법과 파라미터 크기에 따른 적응적 양자화를 통해 추론 속도를 향상시켰다. 제안 모델은 SUN RGB-D Val 와 자체 제작한 모형 사과나무 데이터 셋을 이용하여 성능을 평가하였고 최종적으로 mAP@0.25에서 62.04%, mAP@0.5에서 47.1%의 정확도 성능을 보였으며, 추론 속도는 120.5 scenes per sec로 빠른 실시간 처리속도를 보였다.
석유화학 공정의 증류탑은 공정유체를 분리, 정제하는 중요한 장치 중의 하나로 가동효율은 설비의 생산성에 큰 영향을 미친다. 본 연구는 밀봉 감마선원을 이용하여 투과 감마선의 세기를 높이별로 측정함으로써 내부 밀도의 변화를 분석하여 공정의 가동 중 내부 상황에 대한 정보를 얻고자 하였다. 이를 위하여 한국원자력연구원에서 개발된 자동 증류탑 검사장치를 이용하여 증류탑 상부 양쪽에 밀봉 감마선원과 방사선검출기를 매달아 수직으로 내리면서 실험을 수행하였으며, 이때 감마선원으로는 Co-60 150 mCi과 방사선검출기로 BGO detector를 각각 사용하였다. 진단결과 설비 내부의 tray에는 구조적 결함이 관찰되지 않았으나, 유체분포를 고려할 때 상부는 기포층(vapor)의 밀도분포가 지배적인 반면에, 하단부에는 기포에 비해 유체가 상대적으로 많이 분포하는 것으로 계측되었다. 본 실험으로부터 밀봉 감마선원을 이용한 가동 중에 있는 대형 증류탑의 tray에 대한 구조적 건전성 및 내부 유체분포에 대한 정보를 성공적으로 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.