• Title/Summary/Keyword: Influent

Search Result 842, Processing Time 0.027 seconds

Prediction of Influent Flow Rate and Influent Components using Artificial Neural Network (ANN) (인공 신경망(ANN)에 의한 하수처리장의 유입 유량 및 유입 성분 농도의 예측)

  • Moon, Taesup;Choi, Jaehoon;Kim, Sunghui;Cha, Jaehwan;Yoom, Hoonsik;Kim, Changwon
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.1
    • /
    • pp.91-98
    • /
    • 2008
  • This work was performed to develop a model possible to predict the influent flow and influent components, which are one of main disturbances causing process problems at the operation of municipal wastewater treatment plant. In this study, artificial neural network (ANN) was used in order to develop a model that was able to predict the influent flow, $COD_{Mn}$, SS, TN 1 day-ahead, 2day-ahead and 3 day ahead. Multi-layer feed-forward back-propagation network was chosen as neural network type, and tanh-sigmoid function was used as activation function to transport signal at the neural network. And Levenberg-Marquart (LM) algorithm was used as learning algorithm to train neural network. Among 420 data sets except missing data, which were collected between 2005 and 2006 at field plant, 210 data sets were used for training, and other 210 data sets were used for validation. As result of it, ANN model for predicting the influent flow and components 1-3day ahead could be developed successfully. It is expected that this developed model can be practically used as follows: Detecting the fault related to effluent concentration that can be happened in the future by combining with other models to predict process performance in advance, and minimization of the process fault through the establishment of various control strategies based on the detection result.

Developing a New BNR (Parallel BNR) Process by Computer Simulation (컴퓨터 시뮬레이션을 이용한 신 생물학적 고도처리 (병렬 고도처리) 공법 개발)

  • Lee, Byonghi;Lee, Yong-Woon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.16 no.6
    • /
    • pp.670-678
    • /
    • 2002
  • Since Korean government imposed a stricter regulation on effluent T-N and T-P concentrations from wastewater treatment plant, a new process has to be developed to meet these rules and this process should remove T-N and T-P, economically, from weak wastewater that is typical for Korea's combined sewer system sewage. In this study, a computer simulator, BioWin from EnviroSim, Inc. was used. Three processes - A2/O, Modified Johannesburg, UCT- had been simulated under same operational conditions and a new process - Parallel BNR Process - had been developed based on these simulation results. The Parallel BNR process consists of two rows of reactors: One row has anaerobic and aerobic reactors in series, and the other row has RAS anoxic1 and RAS anoxic2 reactors in series. In order to ensure anaerobic state in anaerobic tank, a part of influent is fed to RAS anoxic1 tank in second row. This process had been simulated under same conditions of other three processes and the simulation results were compared. The results showed that three existing processes could not perform biological phosphorus removal when the average influent was fed at any operation temperatures. However, the Parallel BNR process was found that biological phosphorus removal could be performed when both design and average influent were fed at any operation temperatures. This process showed the T-N concentration in effluent had a maximum value of 15mg/L when design influent was fed at $13^{\circ}C$ and a minimum value of 14mg/L when average influent was fed at $20^{\circ}C$. Also, T-P concentrations had a maximum value of 1.3mg/L when average influent was fed at $20^{\circ}C$ and a minimum value of 1.1mg/L when design influent was fed at $13^{\circ}C$. Based on these results, we found that this process can remove nitrogen and phosphorus biologically under any operational conditions.

Study for Biological Denitrification of High-Strength Nitrate and Nitrite Industrial Wastewater (고농도 질산 및 아질산성 질소 함유 폐수의 생물학적 탈질에 관한 연구)

  • Lee, Byong Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.4
    • /
    • pp.446-454
    • /
    • 2005
  • An economic treatment method to remove oxidized nitrogen from wastewater is biological denitrification with organic matters. Several organics can be used, however, methanol is commonly used. When methanol is provided, M:N (Methanol to Nitrogen) ratio is used to define methanol demand for denitrification. In this study, two artificial wastewaters were provided to a biological system to evaluate denitrification performance. Differences of influent total CODcr from effluent soluble CODcr were converted to methanol equivalent and oxidized nitrogen difference between influent and effluent were converted to nitrate equivalent to define M:N ratios. Modes I, II, III, I-1 and IV showed 5.1, 2.7, 3.3, 2.3 and 2.6 of M:N ratios, respectively. Since denitrifying microorganisms had to build a new metabolic system for methanol and influent organics, initial operation mode, Mode I, required more methanol and this resulted in high M:N ratios compared with later operation mode, Mode I-1. Salt in influent did not show inhibitory effects on denitrfication, although this was believed to increase effluent SS and soluble CODcr concentrations in Mode III, I-1 and IV, respectively. The concentrations of effluent soluble $COD_{Mn}$ did not changed much with influent salt.

Investigation of water qualities and microbials on the flow-through olive flounder, Paralichthys olivaceus farms using coastal seawater and underground seawater in Jeju (연안해수와 지하해수를 사용하는 제주 넙치 양식장의 수질과 미생물 변동)

  • KIM, Youhee
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.1
    • /
    • pp.59-67
    • /
    • 2022
  • This study assessed the levels of water qualities and microbials contamination of inland olive flounder farms in Jeju in the summers from 2015 to 2017. Three farms (A-C) located in a concentrated area using mixing coastal seawater and underground seawater and one farm (D) located in an independent area using only coastal seawater were selected. Total ammonia nitrogen (TAN) reached a maximum of 0.898 ± 1.024 mg/L as N in the coastal seawater of A-C, which was close to the limit of the water quality management goal of the fish farm. TAN in the influent from A-C was up to three times higher than that of D, so that the discharged water did not spread to a wide range area along the coast and continued to affect the influent. TAN of the effluent in A-C increased by 2.7-4.6 times compared to the influent, resulting in serious self-pollution in the flounder farm. Heterotrophic marine bacteria in the influent of A-C was about 600 times higher than D, and the discharge of A-C was increased by about 30 times compared to the influent.

Changes on the Physicochemical Factor of Stream Water by Medium and Small type Fish Farm in Mt. Baegun Area (백운산 지역내 중소형 양어장에 의한 계류수의 이화학적 요인의 변화)

  • Park, Jae-Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.3
    • /
    • pp.43-52
    • /
    • 2005
  • Evaluations of the fish farm influences on stream water quality may provide basic informations on watershed management to reduce environmental impact due to fish farm development and to conserve stream water quality in forested watershed area. In this research influent, effluent water in the fish farm and stream water qualities around Mt. Baegun area were monitored seasonally for six years and the following results were obtained. Due to the increase of pH in effluent water from the fish farm it was believed that alkalization of stream water can be accelerated by large scale development of fish farms in the forested watershed area. Also, effluent water from the fish farm increase of EC higher than influent and stream water. As a result of regression analyses, pH, EC, DO, water temperature, total amount of cation and anion in influent and effluent water of fish farm show high significance.

Estimation of the Reactor Volume Ratio for Nitrogen Removal in Step-Feed Activated Sludge Process (단계 주입 활성슬러지공법에서 질소제거를 위한 반응기 용적비 추정)

  • Lee, Byung-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.130-136
    • /
    • 2006
  • Theoretical total nitrogen removal efficiency and reactor volume ratio in oxic-anoxic-oxic system can be found by influent water quality in this study. The influent water quality items for calculation were ammonia, nitrite, nitrate, alkalinity, and COD which can affect nitrification and denitrification reaction. Total nitrogen removal efficiency depends on influent allocation ratio. The total nitrogen removal follows the equation of 1/(1+b). Optimal reactor volume ratio for maximum TN removal efficiency was expressed by those influent water quality and nitrification/denitrification rate constants. It was possible to expect optimal reactor volume ratio by the calculation with the standard deviation of ${\pm}14.2$.

Removal of Organics and Nirtogen in Wastewater Using 2 Stage A/O(RBC) Process (RBC 반응조를 이용한 2단 A/O 공정에서 유기물질 및 질소제거)

  • 최명섭;손인식
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.3
    • /
    • pp.59-64
    • /
    • 2003
  • This study was conducted to investigate anoxic-RBC-anoxic-RBC process and its application to remove biologically organics and nitrogen. BOD and total-nitrogen(T-N) removal efficiencies were decreased as volumetric loading rate increased. But, the removal efficiency changes of T-N were little, as compared to BOD. Increase of internal recycle rate had few affect of BOD and T-N removal rates. Also, influent allocation(to 2nd anoxic reactor) had few affect of BOD removal efficiency rate. However, when the influent allocation rate was 30%, T-N removal efficiency was increased to 84.1 %. BOD/N ratio applied to 2nd anoxic reactor was increased to range of 3.65-4.37 as influent allocation rate increased to range 20∼35%. But, it might also cause adverse effect such as decrease of denitrification rate in excessive influent allocation rate.

Optimization of influent and effluent baffle configuration of circular secondary clarifier using CFD and PIV test (CFD와 PIV test를 통한 원형 2차침전지 유입 및 유출배플 형상 최적화)

  • Choi, Young-Gyun;Bae, Kang-Hyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.1
    • /
    • pp.73-81
    • /
    • 2014
  • One-dimensional flux theory (1DFT) is conventionally used for design of secondary clarifier of wastewater treatment plant. However, the 1DFT cannot describe turbulence, density current, shape parameters of the clarifier. In this study, we optimized the configurations of influent guide baffle and effluent baffle through the simulation using computational fluid dynamics (CFD) and its verification by particle image velocity (PIV) test. The energy dissipating inlet (EDI) without influent guide baffle ($0^{\circ}$) showed the best efficiency for minimizing downward velocity under the center well of the clarifier. The lowest velocity distribution around the effluent weir region could be obtained with the McKinney baffle (EB-2). The performances of the influent and effluent baffles were clearly verified by PIV test results.

A Study on the Anaerobic Treatment of the Phenol Wastewater with the Sludge Blanket-Packed Bed Reactor (슬러지-고정상 반응기에서 페놀폐수의 혐기성 처리에 관한 연구)

  • 안재동;박동일;김재우;장인용
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.3
    • /
    • pp.72-80
    • /
    • 1996
  • This study was carried to investigate the biodegradability of phenol wastewater in the sluge blanket-packed bed reactor(SBPBR). The reactor consisted of two regions. The lower region was a sludge blanket of 0.5 m height and the upper region was a packed-bed. The phenol and COD concentration of the effluent, the gas production and the composition of gas were measured to determine the performance of the anaerobic wastewater treatment system as the phenol concentration of the influent was increased from 600 to 1800 mg/l. Stable biodegradation of phenol wastewater could be achieved with the anaerobic treatment system from 600 to 1200 mg/l of the influent phenol concentration. But the SBPBR system was getting more serious at 1800 mg/l of influent phenol concentration. At the steady state of the influent phenol concentration of 600-1200 mg/l, the treatment performance showed the phenol removal efficiency of 94.5~96.3%, the COD removal efficiency of 93.3~96% and the gas production of 4.94~9.64 l/day.

  • PDF

Theoretical Analysis for Nitrogen Removal in Step Feed Oxic-Anoxic-Oxic Process

  • Lee, Byung-Dae;Kim, Il-Chool
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.355-362
    • /
    • 2008
  • One of the popular domestic sewage treatment process (called step feed oxic-anoxic-oxic process) for nitrogen removal was analyzed in this study by theoretical analysis based on the nitrification and denitrification reaction. Total nitrogen removal efficiency was suggested by considering influent qualities(i.e., ammonia, nitrite, nitrate, alkalinity, and COD). Total nitrogen removal efficiency depends on r (influent allocation ratio). In the case that all influent components are enough, the total nitrogen removal follows equation 100-b/(1+b), when r is 1/(1+b). Finally, it can be concluded that step feed oxic-anoxic-oxic process could be effective for nitrogen removal.