• Title/Summary/Keyword: Influence curve

Search Result 652, Processing Time 0.029 seconds

Study on Lateral Flow Distribution and Momentum Analysis at Flood season and Neap tide of the Seokmo Channel in the Han River estuary (소조기 홍수시 한강하구 석모수로에서의 횡 방향 2차 흐름 및 운동량 분석)

  • Choi, Nak Yong;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.6
    • /
    • pp.390-399
    • /
    • 2012
  • This research observed the cross section current of 7 survey lines in Seokmo Channel of Gyeonggi bay with a lot of freshwater inflow and S-shaped for 13 hours during flood season and neap tide. We indicated the distribution of the current velocity by comprehending the speed and direction of the current velocity of each line during maximum flood, ebb tide and observed the distribution of salinity. Moreover, in order to understand what lateral momentum causes the lateral flow in each survey line, we practiced the momentum analysis through the observation data. As a result, the lateral baroclinic pressure gradient force and vertical friction of the Seokmo channel during neap tide were the strongest, and this is why the flow by the distribution of salinity and stratification most often occurs. In north of the Seokmo channel, where have wide intertidal and a lot of freshwater inflow, the secondary circulation is caused by balance of lateral baroclinic pressure gradient force and other forces, and the vertical friction was strong in the lines with small depth. On the other hand, in the southern part of the Seokmo channel where the water is deep and the waterway is curved, the advective acceleration and centrifugal force become stronger by the geographical causes during ebb and the influence of fresh water. Therefore, the lateral flow in the Seokmo channel was caused by the distribution of the momentum that differs by location, depth, curve, etc.

THE EFFECT OF ABUTMENT HEIGHT ON SCREW LOOSENING IN SINGLE IMPLANT-SUPPORTED PROSTHESES AFTER DYNAMIC CYCLIC LOADING

  • Kim Nam-Gun;Kim Yung-Soo;Kim Chang-Whe;Jang Kyung-Soo;Lim Young-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.6
    • /
    • pp.664-670
    • /
    • 2004
  • Statement of problem. One of the common problems of dental implant prosthesis is the loosening of the screw that connects each component, and this problem is more common in single implant-supported prostheses with external connection. Purpose. The purpose of this study was to examine the changes of detorque values of abutment screws with external connection in different abutment heights. Materials and methods. After cyclic loading on three different abutment heights, detorque values were measured. Abutments were retained with titanium abutment screws tightened to 30 Ncm (30.5 kgmm) with digital torque gauge as recommended by the manufacturer. Replacing abutments, implants and titanium abutment screws with new ones at every measurement, initial detorque values were measured six times. In measuring de torque values after cyclic loading, Avana Cemented Abutments of 4.0 mm collar, 7.0 mm height (Osstem Co., Ltd., Seoul, Korea) were used with three different lengths of 5.0, 8.0, 11.0 mm. Shorter abutments were made by milling of 11.0 mm abutment to have the same force-exercised area of 4.5 mm diameter. Sine curve force (20N-320N, 14Hz) was applied, and detorque values were measured after cyclic loading of 2 million times by loading machine. Detorque values of initial and after-loading were measured by digital torque gauge. One-way ANOVA was employed to see if there was any influence from different abutment heights. Results. The results were as follows: 1. The initial detorque value was 27.8$\pm$0.93 kgmm, and the ratio of the initial detorque value to the tightening torque was 0.91(27.8/30.5). 2. Measured detorque values after cyclic loading were declined as the height of the abutment increased, that was, 5.0 mm; 22.3$\pm$0.82 kgmm, 8.0 mm; 21.8$\pm$0.93 kgmm, and 11.0 mm; 21.3$\pm$0.94 kgmm. 3. One-way ANOVA showed no statistically significant differences among these (p>0.05). 4. Noticeable mobility at the implant-abutment interface was not observed in any case after cyclic loading at all.

A Study on the Application of Accident Severity Prediction Model (교통사고 심각도 예측 모형의 활용방안에 관한 연구 (서해안 고속도로를 중심으로))

  • Won, Min-Su;Lee, Gyeo-Ra;O, Cheol;Gang, Gyeong-U
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.4
    • /
    • pp.167-173
    • /
    • 2009
  • It is important to study on the traffic accident severity reduction because traffic accident is an issue that is directly related to human life. Therefore, this research developed countermeasure to reduce traffic accident severity considering various factors that affect the accident severity. This research developed the Accident Severity Prediction Model using the collected accident data from Seohaean Expressway in 2004~2006. Through this model, we can find the influence factors and methodology to reduce accident severity. The results show that speed limit violation, vehicle defects, vehicle to vehicle accident, vehicle to person accident, traffic volume, curve radius CV(Coefficient of variation) and vertical slope CV were selected to compose the accident severity model. These are certain causes of the severe accident. The accidents by these certain causes present specific sections of Seohaean Expressway. The results indicate that we can prevent severe accidents by providing selected traffic information and facilities to drivers at specific sections of the Expressway.

Evaluation of Mechanical Properties and Fatigue Behavior of STS 304L due to Plastic Working (소성가공에 따른 STS 304L 재료의 기계적 특성 및 피로평가)

  • Shim, Hyun-Bo;Kim, Young-Kyun;Suh, Chang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.635-643
    • /
    • 2017
  • The purpose of this study is to investigate the influence of the cold reduction rate and an ultrasonic fatigue test (UFT) on the fatigue behaviors of STS 304L. The tensile strength, yield strength, hardness value and fatigue limit in the UFT fatigue test linearly increased as thickness decreased from 1.5 mm to 1.1 mm, as the cold reduction rate of STS 304L increased. As a result of the UFT fatigue test (R = -1) of four specimens, the fatigue limit of the S-N curve formed a knee point in the region of $10^6$, and the 2nd fatigue limit caused by giga cycle fatigue did not appeared. In the case of t = 1.1 mm, the highest fatigue limit was 345 MPa, which was 64.3% higher than the original material (t = 1.5 mm). As a result of the UFT fatigue test of STS 304L, many small surface cracks occurred, grown, coalesced while tearing.

A Study on the Gradation Effect of the Property of Roller Compacted Concrete Pavement (골재 입도분포가 도로포장용 롤러전압 콘크리트에 미치는 영향 연구)

  • Song, Si Hoon;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.17 no.3
    • /
    • pp.49-58
    • /
    • 2015
  • PURPOSES : The use of environmentally friendly construction methods has been recently encouraged to reduce fuel consumption and the effects of global warming. For this purpose, the roller compacted concrete pavement (RCCP) construction method has been developed. RCCP is more environmentally friendly and economically efficient than general concrete by reducing the amount of CO2 generated through the application of a smaller amount of cement. RCCP has a number of advantages such as an easy construction method, low cost, high structural hydration performance, and aggregate interlocking. However, mix design standards and construction guidelines of RCCP are required for domestic application. In addition, a study on aggregate selection, which has an effect on the characteristics of RCCP, is necessary owing to a limited number of researches. Thus, the aggregate effect on the performance of RCCP in securing the required strength and workability was evaluated in consideration of domestic construction. METHODS : Sand and coarse aggregates of both 19mm and 13mm in maximum size were used in this study. Four types of aggregate gradations (s/a = 30%, 58%, and 70% for the sand and coarse aggregate of 19mm in maximum size, and s/a = 50% for a combination of the three types of aggregates) were set up to investigate the effects of the PCA band on the RCC characteristics. The conditions of s/a = 30% and 70% were evaluated to check the gradation effect outside of the recommended band. The conditions of s/a = 58% and 50% were used because they are the optimum combination of the two and three types of aggregates, respectively. RCCP gradation band was suggested gradation with a proper construction method of RCCP by synthetically comparing and analyzing the correlation of optimum water content, maximum dry density, and strength of requirements through its consistency and compaction test. RESULTS : The lower and upper limit lines are insufficient to secure a relatively strong development and workability compared to an aggregate gradation in the RCCP gradation band region. On the other hand, the line in the RCCP gradation band and the 0.45 power curve in the RCCP gradation band region were satisfactory, ensuring the required strength and workability. CONCLUSIONS : The suitable aggregate gradation on RCCP process should meet the RCCP gradation band area; however, fine particles passing through a #60 sieve do not need to be within the recommended gradation band because the influence of this region on such fine particles is small.

Estimation of Direct Runoff Variation According to Land Use Changes in Jeju Island (제주도 토지이용변화에 따른 직접유출량 변화 추정)

  • Ha, Kyoo-Chul;Park, Won-Bae;Moon, Deok-Cheol
    • Economic and Environmental Geology
    • /
    • v.42 no.4
    • /
    • pp.343-356
    • /
    • 2009
  • SCS method was applied to make the assessments of direct runoff according to land use changes in Jeju island. Land uses were obtained from 5 year-period remote sensing time series data from 1975 to 2000 which are provided by Water Management Information System (WAMIS). Hydrologic soil groups were categorized based on soil series of National Academy of Agricultural Sciences (NAAS), and permeable geologic structures such as Sumgol, Gotzawal and so on. The land uses of Jeju island are obviously characterized by urban-agricultural areas increases, and forest areas decrease. According to land use changes, curve number (CN) for Jeju island was consistently increased from 65.3 in 1975 to 69.6 in 2000. From 1975 to 2000, the amount of direct runoff and ratios increased due to CN changes. When the rainfall data in 1995 was applied to each year, the direct runoff amounts were $299.0{\sim}351.6\;mm$, and runoff ratios were $15.1{\sim}17.7%$. In the case of the application of the rainfall data in 2000, the direct runoff amounts were $136.9{\sim}161.5\;mm$, and runoff ratios were $9.7{\sim}11.5%$. Since direct runoff can be closely related to groundwater recharge and sustainable groundwater yield, the groundwater influence caused by land use changes or district exploitations should be considered for the reasonable water management and development in Jeju island.

Voltammetric Determination of Cu(II) Ion at a Chemically Modified Carbon-Paste Electrode Containing 1-(2-pyridylazo)-2-naphthol (1-(2-Pyridylazo)-2-naphthol 수식전극을 사용한 Cu(II) 이온의 전압전류법적 정량)

  • Jun-Ung Bae;Hee Sook Jun;Hye-Young Jang
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.8
    • /
    • pp.723-729
    • /
    • 1993
  • Cu(II) ion-responsive chemically modifed electrodes (CMEs) were constructed by incorporating 1-(2-pyridylazo)-2-naphthol (PAN) into a conventional carbon-paste mixture of graphite powder and Nujol oil. Cu(II) ion was chemically deposited on the surface of the PAN-chemically modified electrode in the absence of an applied potential by immersion of the electrode in a buffer solution (pH 3.2) containing Cu(II) ion, and then reduced at a constant potential in 0.1 M KNO$_3$. And a well-defined voltammetric peak could be obtained by scanning the potential to the positive direction. The electrode surface could be regenerated with exposure to acid solution and reused for the determination of Cu(II) ion. In 5 deposition / measurement / regeneration cycles, the response could be reproduced with 6.1${\%}$ relative standard deviation. In case of using the differential pulse voltammetry, the calibration curve for Cu(II) was linear over the range of 2.0 ${times}$ 10$^{-7}$ ∼ 1.0 ${times}$ 10$^{-6}$ M. And the detection limit was 6.0 ${times}$ 10$^{-8}$ M. Studies of the effect of diverse ions showed that Co, Ni, Zn, Pb, Mg and Ag ions added 10 times more than Cu(II) ion did not influence on the determination of Cu(II) ion, except EDTA and oxalate ions.

  • PDF

Risk-Targeted Seismic Performance of Steel Ordinary Concentrically Braced Frames Considering Seismic Hazard (지진재해도를 고려한 철골 보통중심가새골조의 위험도기반 내진성능)

  • Shin, Dong-Hyeon;Hong, Suk-Jae;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.371-380
    • /
    • 2017
  • The risk-targeted seismic design concept was first included in ASCE/SEI 7-10 to address problems related to the uniform-hazard based seismic concept that has been constructed without explicitly considering probabilistic uncertainties in the collapse capacities of structures. However, this concept is not yet reflected to the current Korean building code(KBC) because of insufficient strong earthquake data occurred at the Korean peninsula and little information on the collapse capacities of structures. This study evaluates the risk-targeted seismic performance of steel ordinary concentrically braced frames(OCBFs). To do this, the collapse capacities of prototype steel OCBFs are assessed with various analysis parameters including building locations, building heights and soil conditions. The seismic hazard curves are developed using an empirical spectral shape prediction model that is capable of reflecting the characteristics of earthquake records. The collapse probabilities of the prototype steel OCBFs located at the Korean major cities are then evaluated using the risk integral concept. As a result, analysis parameters considerably influence the collapse probabilities of steel OCBFs. The collapse probabilities of taller steel OCBFs exceed the target seismic risk of 1 percent in 50 years, which the introduction of the height limitation of steel OCBFs into the future KBC should be considered.

Influence of Concrete Strength and Lateral Ties on Behavior of High-Strength Concrete Columns Subjected to Eccentric Compressive Load (편심 압축력을 받는 고강도 콘크리트 기둥의 거동에 미치는 띠철근 및 콘크리트 강도의 영향)

  • Lee, Young Ho;Chung, Heon Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.95-104
    • /
    • 2007
  • This study was focused on the effect of concrete strength and lateral ties of concrete columns subjected to eccentric compressive loads. The twenty-four concrete columns with $200mm{\times}200mm$ square cross-section were tested. The main variables were concrete strength, spacing and configuration of lateral ties, and eccentricity ratios. From the experiment, the followings were investigated ; 1) In all cases, it was observed that the increase of concrete compressive strength led to the decrease of ductility. Also, as the eccentricity ratios increased, the effect of ductility enhancement by lateral ties decreased. 2) As the ties spacing decreased from 100mm to 30mm, the magnitude of axial load acting on the concrete column showed an enhancement of 1.1~1.2 times and the descending curve after a peak moment presented a smooth decline. 3) The high-strength concrete columns required a design of lateral ties to increase the volumetric ratios and density of tie spacing to sustain a proper strength and ductility. Accordingly, regardless of concrete strength, the current AIK design code to specify the maximum tie spacing of concrete columns was proven to lead to the poor strength and ductility for seismic design. Therefore, it is necessary to develop a new seismic design code that connects volumetric ratios and tie spacing of concrete columns with concrete strength.

Packaging Techniques to Prevent Winter Kimchi from Inflation (겨울 김치에 대한 팽창 방지 포장 기법)

  • Hong, Seok-In;Park, Noh-Hyun;Park, Wan-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.285-291
    • /
    • 1996
  • The effect of various packaging methods on Kimchi quality was investigated in order to develop the packaging techniques for preventing commercial Kimchi Products from ination and explosion due to fermentative gas evolved during storage and distribution. Kimchi was packaged in different methods; atmospheric (AP), check-valved (CV), double (DP) and vacuum (VP) packaging. The quality of Kimchi during storage at $10^{\circ}C$ was evaluated ill terms of gas composition, free volume, pH, titratable acidity, color index, lactic acid bacteria and sensory properties. $O_2$ concentration decreased to about 1% at $6{\sim}8$ days of optimal ripening time in all packages except DP, in which it remained around 20%. $CO_2$ concentration reached $70{\sim}90%$ after $6{\sim}8$ days in AP, CV and DP, while it stayed around 10% in DP. The free volume in AP had typical sigmoidal curve similar to $CO_2$ concentration changes. It remained almost constant in CV and DP, but started to increase at the late stage of storage In VP. There was no significant influence of packaging methods on the other quality attributes such as pH, titratable acidity, color index (L.b/a), lactic acid bacteria count and sensory evaluation score. As results, it could be proposed to employ CV and DP method as the effective packaging techniques for preventing commercial Kimchi products from inflation.

  • PDF