• Title/Summary/Keyword: Influence coefficient matrix

Search Result 73, Processing Time 0.026 seconds

Free Vibration Analysis of Double Cylindrical Shells Using Transfer of Influence Coefficent (영향계수의 전달에 의한 2중 원통형 셸의 자유진동해석)

  • Choi, Myung-Soo;Yeo, Dong-Jun
    • Journal of Power System Engineering
    • /
    • v.21 no.5
    • /
    • pp.48-54
    • /
    • 2017
  • The transfer influence coefficient method which is an vibration analysis algorithm based on the transfer of influence coefficient is applied to the free vibration analysis of double cylindrical shells. After the computational programs for the free vibration analysis of double cylindrical shells were made using the transfer influence coefficient method and the transfer matrix method, we compared the results using the transfer influence coefficient method with those by the transfer matrix method. The transfer influence coefficient method provided the good computational results in the free vibration analysis of double cylindrical shells. In particular, The results of the transfer influence coefficient method are superior to those of the transfer matrix method when the stiffness of internal springs connecting a inside cylindrical shell and a outside cylindrical shell is very large.

Enhanced Influence Coefficient Matrix for Estimation of Local Ice Load on the IBRV ARAON (쇄빙연구선 ARAON호의 국부 빙하중 추정을 위한 영향계수행렬의 보완)

  • Cho, Sungrok;Choi, Kyungsik;Son, Beomsik;Jeong, Seong-Yeob;Ha, Jung-Seok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.5
    • /
    • pp.330-338
    • /
    • 2021
  • This paper focuses on the improvement of the influence coefficient matrix method for estimation of local ice load on the icebreaking research vessel ARAON. The influence coefficient matrix relates ice pressure on the hull plate to the measured/calculated hull strain/stress. Conventionally von Mises equivalent stresses representing hull stresses and ice pressure acting on the hull plate are utilized to assemble the influence coefficient matrix. Because of the three dimensional features of the ship-ice collision process, an enhanced method to assemble the influence coefficient matrix is derived considering ice loads in the X, Y, and Z direction simultaneously. Furthermore the location of ice loads acting on hull-plate may fall outside the measuring sensor area, and the enhanced influence coefficient matrix is modified to reduce the difference between the actual and the estimated ice loads by expanding the domain outward from the sensor area. The developed method for enhanced influence coefficient matrix is applied to IBRV ARAON during the 2019 Antarctic ice field test and the local ice loads in three directions are efficiently calculated compared to those by a conventional method.

Free Vibration Analysis of Timoshenko Arcs with Elastic Supports Using Transfer of Influence Coefficient (영향계수의 전달을 이용한 탄성 지지된 티모센코 호의 자유진동 해석)

  • Choi, Myung-Soo;Yeo, Dong-Jun
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.70-76
    • /
    • 2017
  • When Timoshenko arcs considering the shear deformation and rotatory inertia have elastic supports, the authors analyze in-plane free vibration of them by the transfer influence coefficient method. This method finds the natural frequencies of them using the transfer of influence coefficient after obtaining the transfer matrix of arc element from numerical integration of the differential equations governing the vibration of arc. In this study, two computer programs were made by the transfer influence coefficient method and the transfer matrix method for analyzing free vibration of Timoshenko arcs. From numerical results of four computational models, we confirmed that the transfer influence coefficient method is a reliable method when analyzing the free vibration of Timoshenko arcs. In particular, the transfer influence coefficient method is a effective method when analyzing the free vibration of arcs with rigid supports.

Structural Dynamics Analysis of a Clamp Jointed Complex Ream by Using the Flexibility Influence Coefficient Method (유연도 영향계수법을 이용한 접촉결합부가 있는 복합구조물의 동적 해석)

  • 조재혁;김현욱;최영휴
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.528-533
    • /
    • 1995
  • An analyical method is proposed to construct a clamp jointed structure as an equivalent stiffness matrix element in the finite element modal analysis of a complex beam structure. Static structural analysis was first made for the detail finite element model of the clamp joint. Utilizing the results of this analysis, the equivalent stiffness matrix element was buildup by using the flexibility influence coefficient method and Guyan condensation. The proposed method was applied to finite element modal analysis of a clamp jointed cantilever beam. And the finite element analysis results were compared to those experimental modal analysis. Comparison shows doog agreement each other Furthermore the effects of normal contact(or clamping) load on the equivalent stiffness matrix was also examined. The equivalent stiffness matrix showed little change in spite of the remakable increase in the contact load on the clamp joint.

  • PDF

Development of Vibration Analysis Algorithm for Joined Conical-cylindrical Shell Structures using Transfer of Influence Coefficient

  • Yeo, Dong-Jun;Choi, Myung-Soo
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.50-57
    • /
    • 2013
  • This describes the formulation for the free vibration of joined conical-cylindrical shells with uniform thickness using the transfer of influence coefficient. This method was developed based on successive transmission of dynamic influence coefficients, which were defined as the relationships between the displacement and the force vectors at arbitrary nodal circles of the system. The two edges of the shell having arbitrary boundary conditions are supported by several elastic springs with meridional/axial, circumferential, radial and rotational stiffness, respectively. The governing equations of vibration of a conical shell, including a cylindrical shell, are written as a coupled set of first order differential equations by using the transfer matrix of the shell. Once the transfer matrix of a single component has been determined, the entire structure matrix is obtained by the product of each component matrix and the joining matrix. The natural frequencies and the modes of vibration were calculated numerically for joined conical-cylindrical shells. The validity of the present method is demonstrated through simple numerical examples, and through comparison with the results of previous researchers.

Vibration Analysis of Conical Shells with Annular Plates Using Transfer of Influence Coefficient (영향계수의 전달에 의한 환원판이 결합된 원추형 셸의 진동해석)

  • Choi, Myung-Soo;Yeo, Dong-Jun
    • Journal of Power System Engineering
    • /
    • v.19 no.5
    • /
    • pp.52-59
    • /
    • 2015
  • This paper is presented for the free vibration of a conical shell with annular plates or circular plate using the transfer of influence coefficient. The governing equations of vibration of a conical shell, including annular plate, are written as a coupled set of first order differential equations by using the transfer matrix of the shell. Once the transfer matrix of a single component has been determined, the entire structure matrix is obtained by the product of each component matrix and the joining matrix. The natural frequencies and the modes of vibration were calculated numerically for joined conical-annular plates. The validity of the present method is demonstrated through simple numerical examples, and through comparison with the results of finite element method, transfer matrix method and ANSYS. The conclusion show that the present method can accurately obtain natural vibration characteristics of the conical shell with annular or circle end plates.

Influnce Coefficient of Two-Plane Flexible Rotor Balancing Model Having a Rigid Cylinder (강체 원통을 중아에 갖는 2-보정면 탄성회전체 밸런싱 모델에서의 영향계수)

  • Jun, Oh Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.166-173
    • /
    • 1997
  • Influence coefficients on two-plane flexible rotor balancing model are derived by using the transfer matrix method. The model has a rigid uniform cylinder at mid-span of flexible shafts. Both faces of the rigid cylinder are used as the balancing planes. Calculated influence coefficients show that there exist the rotating speed ranges which are useless or insensitive for the balancing. Gyroscopic effect and damping are considered in the study and their effects are discussed.

  • PDF

Optimal sensor placement for bridge damage detection using deflection influence line

  • Liu, Chengyin;Teng, Jun;Peng, Zhen
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.169-181
    • /
    • 2020
  • Sensor placement is a crucial aspect of bridge health monitoring (BHM) dedicated to accurately estimate and locate structural damages. In addressing this goal, a sensor placement framework based on the deflection influence line (DIL) analysis is here proposed, for the optimal design of damage detection-oriented BHM system. In order to improve damage detection accuracy, we explore the change of global stiffness matrix, damage coefficient matrix and DIL vector caused by structural damage, and thus develop a novel sensor placement framework based on the Fisher information matrix. Our approach seeks to determine the contribution of each sensing node to damage detection, and adopts a distance correction coefficient to eliminate the information redundancy among sensors. The proposed damage detection-oriented optimal sensor placement (OSP) method is verified by two examples: (1) a numerically simulated three-span continuous beam, and (2) the Pinghu bridge which has existing real damage conditions. These two examples verify the performance of the distance corrected damage sensitivity of influence line (DSIL) method in significantly higher contribution to damage detection and lower information redundancy, and demonstrate the proposed OSP framework can be potentially employed in BHM practices.

Free Vibration Analysis of Disk Structure by the Transfer Influence Coefficient Method (전달영향계수법에 의한 원판구조물의 자유진동해석)

  • ;末岡淳男;近騰孝廣
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1439-1446
    • /
    • 1991
  • 본 연구에서는 동적영향계수의 축차전달에 그 개념을 두고 있는 전달영향계수 법을, 2층 원판구조물의 자유진동해석애 적용해서, 그 알고리즘을 정식화 하고 전달매 트릭스법과 비교 검토하였다.

On Development of Vibrational Analysis Algorithm of Cylindrical Shell Structures With Stiffeners (보강재를 갖는 원통셸 구조물의 진동해석 알고리즘의 개발에 관한 연구)

  • 문덕홍;여동준
    • Journal of KSNVE
    • /
    • v.6 no.4
    • /
    • pp.481-491
    • /
    • 1996
  • In this paper, we formulated algorithm for free vibration analysis of cylindrical shells with stiffeners by applying the transfer influence coefficient method. This was developed as a vibration analysis method suitable for using personal computer(PC). The simple computational results form PC demonstrated the validity of the present algorithm, that is, the computational high accuracy and speed, and the flexibility of programming. We compared with results of the transfer matrix method and the reference. We also confirmed that the present algorithm could provide the solutions of high accuracy for system with a lots of intermediate rigid supports and stiffeners. And all boundary conditions and the intermediate stiff supports between shell and foundation could be treated only by adequately varying the values of the spring constants.

  • PDF