• Title/Summary/Keyword: Influence Propagation

Search Result 553, Processing Time 0.035 seconds

The Dilemma of Parameterizing Propagation Time in Blockchain P2P Network

  • Rahmadika, Sandi;Noh, Siwan;Lee, Kyeongmo;Kweka, Bruno Joachim;Rhee, Kyung-Hyune
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.699-717
    • /
    • 2020
  • Propagation time on permissionless blockchain plays a significant role in terms of stability and performance in the decentralized systems. A large number of activities are disseminated to the whole nodes in the decentralized peer-to-peer network, thus causing propagation delay. The stability of the system is our concern in the first place. The propagation delay opens up opportunities for attackers to apply their protocol. Either by accelerating or decelerating the propagation time directly without proper calculation, it brings numerous negative impacts to the entire blockchain system. In this paper, we thoroughly review and elaborate on several parameters related to the propagation time in such a system. We describe our findings in terms of data communication, transaction propagation, and the possibility of an interference attack that caused an extra propagation time. Furthermore, we present the influence of block size, consensus, and blockchain scalability, including the relation of parameters. In the last session, we remark several points associated with the propagation time and use cases to avoid dilemmas in the light of the experiments and literary works.

Influence of Input Parameters on Shock Wave Propagation in Quasi-3D Hydrodynamic Model (준3차원 동수역학 모형의 입력변수가 충격파 전파에 미치는 영향)

  • Rhee, Dong Sop;Kim, Hyung-Jun;Song, Chang Geun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.112-116
    • /
    • 2017
  • Present study investigated the influence of time step size, turbulent eddy viscosity, and the number of layer on rapid and unsteady propagation of dam break flow. When the time step size had a value such that it resulted in Cr of 0.89, a significant numerical oscillation was observed in the vicinity of the wave front. Higher turbulent viscosity ensured smooth and mild slope of velocity and water stage compared with the flow behavior by no viscosity. The vertical velocity at the lower layer positioned near the bottom showed lower velocity compared with other layers.

In Vitro Propagation of Commonly Used Medicinal Trees in Korea

  • An, Chanhoon
    • Journal of Forest and Environmental Science
    • /
    • v.35 no.4
    • /
    • pp.272-280
    • /
    • 2019
  • Forest medicinal resources, which constitute one of the non-timber forest products, have been regarded as healthy and highly valued products. To meet the increasing demand of the medicinal resources, it is necessary to improve the propagation methods of medicinal plants. In vitro propagation not only allows an opportunity for propagating plants in large numbers but also allows for enhancing the quality and quantity of the desired functional component of a plant by altering the growth factors, such as medium, carbon source, and plant growth regulators influence plant. There have been several studies of in vitro propagation methods, such as axillary bud culture, shooting, and embryogenesis, on Kalopanax septemlobus, Eleutherococcus sessiliflorus, Hovenia dulcis, and Schisandra chinensis in Korea between from 2000 through 2010. Furthermore, there have been attempts to proliferate callus and plantlets for producing useful natural compounds by using bioreactors. Here, we provide an account of the in vitro propagation methods of medicinal trees in Korea based on a review of several micropropagation studies.

Wave propagation in an FG circular plate in thermal environment

  • Gui-Lin, She;Yin-Ping, Li
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp.615-622
    • /
    • 2022
  • In this paper, considering the temperature dependence of material physical parameters as well as the effects of thermal effect and shear deformation, we have conducted an in-depth study on the wave propagation of functionally graded (FG) materials circular plate in thermal environment based on the physical neutral surface concept. The dynamic governing equations of functionally graded plates are established, and the dispersion relation of wave propagation is derived. The influence of different temperature fields on the propagation characteristics of flexural waves in FG circular plates is discussed in detail. It can be found that the phase velocity and group velocity of wave propagation in the plate decrease with the increase of temperature.

Influence of Surrounding Gas and Coal Characteristics on Flame Propagation in Oxy-Fuel Combustion of Pulverized Coal (미분탄 순산소 연소에서 주위 기체와 석탄 특성이 화염전파에 미치는 영향)

  • Kang, Young-Min;Shim, Young-Sam;Moon, Cheor-Eon;Sung, Yon-Mo;Seo, Sang-Il;Kim, Tae-Hyung;Choi, Gyung-Min;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.1
    • /
    • pp.38-45
    • /
    • 2009
  • Oxy-fuel combustion of pulverized coal is one of the promising new technologies to reduce $CO_2$ and NOx from coal combustion. However, the stability of pulverized coal flame is reduced in the oxy-fuel combustion. This flame stability is concerned with the flame propagation that is affected by surrounding gas and coal characteristics, such as gas temperature, gas composition, coal volatile, coal activation energy and coal size. In this paper, a study on the influence of surrounding gas and coal characteristics on the flame propagation velocity in oxy-fuel combustion of pulverized coal was preformed. One dimensional model was used to calculate the flame propagation velocity of pulverized coal clouds. In this model, the radiation is considered to be the main source of heat exchange, and Monte Carlo method was adopted for accurate calculation of radiation heat flux. It was found that the flame propagation velocity become higher with the decrease of coal activation energy and the increase of coal volatile. Also, according to the increase of gas temperature and $O_2$ concentration, flame propagation velocity increased.

Analysis of the indoor radio signal propagation characteristics by ray-tracing technique (Ray-Tracing을 이용한 구내 전파 전파특성 해석)

  • Ryu, Hwang
    • The Journal of Natural Sciences
    • /
    • v.8 no.2
    • /
    • pp.101-109
    • /
    • 1996
  • In this paper, using the derived formula based on field theory both geometrical optics and diffraction theory, several features of same buildings of Bertoni's construction that influence the propagation of signals between antennas located on the same floor have been investigated theoretically and compared with previously studied results.

  • PDF

EMW Propagation Characteristics in Waveguides Loaded with Gyromagnetic Materials (회전자성체내에서의 전자파 전파특성)

  • Hyung Joo Woo
    • 전기의세계
    • /
    • v.25 no.1
    • /
    • pp.101-103
    • /
    • 1976
  • Recently there exist many reports about the results of the theoretical analysis on the influence of screw symmetry structure to the characteristics of EMW propagation in the cylindrical wave-guides loaded with ferrite and, in this paper, an attempt is mode to analyze applying symmetry analysis the wave propagation characteristics in the dual turnstile structure. And one of the results obtained is the values of wave vectors become, in general, different according to the orientation of the geometry in the case of the dual turnstile structure.

  • PDF

The influence of the initial stresses on Lamb wave dispersion in pre-stressed PZT/Metal/PZT sandwich plates

  • Kurt, Ilkay;Akbarov, Surkay D.;Sezer, Semih
    • Structural Engineering and Mechanics
    • /
    • v.58 no.2
    • /
    • pp.347-378
    • /
    • 2016
  • Within the scope of the plane-strain state, by utilizing the three-dimensional linearized theory of elastic waves in initially stressed piezoelectric and elastic materials, Lamb wave propagation and the influence of the initial stresses on this propagation in a sandwich plate with pre-stressed piezoelectric face and pre-stressed metal elastic core layers are investigated. Dispersion equations are derived for the extensional and flexural Lamb waves and, as a result of numerical solution to these equations, the corresponding dispersion curves for the first (fundamental) and second modes are constructed. Concrete numerical results are obtained for the cases where the face layers' materials are PZT-2 or PZT-6B, but the material of the middle layer is Steel (St) or Aluminum (Al). Sandwich plates PZT-2/St/PZT-2, PZT-2/Al/PZT-2, PZT-6B/St/PZT-6B and PZT-6B/Al/PZT-6B are examined and the influence of the problem parameters such as piezoelectric and dielectric constants, layer thickness ratios and third order elastic constants of the St and Al on the effects of the initial stresses on the wave propagation velocity is studied.

Interacting Effects of an Ultrasonic Standing-wave on the Propagation Behavior and Structural Stabilization of Propane/Air Premixed Flame (프로판/공기 예혼합화염의 전파거동 및 구조안정화에 대한 정상초음파의 간섭효과)

  • Lee, Sang Shin;Seo, Hang Seok;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.1-8
    • /
    • 2012
  • An experimental study has been conducted to scrutinize into the influence of ultrasonic standing wave on the propagating behavior and structural stabilization of propane/air premixed flame at various equivalence ratios in half-open rectangular duct. Evolutionary features of the flame fronts are caught by high-speed images, and the variation of flame structure and local flame velocities along the propagation are analyzed. It is revealed that the propagation velocity agitated by the ultrasonic standing wave is greater than that without the agitation: the velocity enhancement diminishes as the equivalence ratio approaches the stoichiometric. Influence of standing wave on the flame overwhelms that of the buoyancy which slants the flame front towards top of the duct, and thus the standing wave contributes to the structural stabilization of propane/air premixed flame.

Domain Switching and Crack Propagation of $BaTiO_3$ Single Crystal in Different Environments

  • Gao, Kewei;Zhao, Xianwu;Wang, Ruimin;Qiao, Lijie;Chu, Wuyang
    • Corrosion Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.307-314
    • /
    • 2008
  • The influence of a moist atmosphere on $90^{\circ}$ domain switching under a sustained electric field, stress corrosion cracking of an indentation crack in water and an aggressive solution, and the relation between penetrating crack propagation and domain switching were studied using $BaTiO_3$ single crystal. The results indicate that enlarging the domain switching zone and crack propagation could be facilitated by a moist atmosphere or an aggressive solution due to the indentation residual stress. A moist atmosphere exerts remarkable influence upon the polarization of $BaTiO_3$ single crystal under a sustained electric field, and the surface energy of the c domain was much lower than that of the a domain. Domain switching ahead of a penetrating indentation crack tip was an essential requirement for crack propagation under constant stress.