• Title/Summary/Keyword: Inflammatory mediator

Search Result 208, Processing Time 0.023 seconds

Inhibitory Effects on Oral Microbial Activity and Production of Lipopolysaccharides-Induced Pro-Inflammatory Mediators in Raw264.7 Macrophages of Ethanol Extract of Perilla flutescens (L.) Britton

  • Jeong, Moon-Jin;Lim, Do-Seon;Lee, Myoung-Hwa;Heo, Kyungwon;Kim, Han-Hong;Jeong, Soon-Jeong
    • Journal of dental hygiene science
    • /
    • v.20 no.4
    • /
    • pp.213-220
    • /
    • 2020
  • Background: The leaves of Perilla frutescens, commonly called perilla and used for food in Korea, contain components with a variety of biological effects and potential therapeutic applications. The purpose of this study was to identify the components of 70% ethanol extracted Perilla frutescens (EEPF) and determine its inhibitory effects on oral microbial activity and production of nitric oxide (NO) and prostaglandin E2 (PGE2) in lipopolysaccharides (LPS)-stimulated Raw264.7 macrophages, consequently, to confirm the possibility of using EEPF as a functional component for improving the oral environment and preventing inflammation. Methods: One kg of P. frutescens leaves was extracted with 70% ethanol and dried at -70℃. EEPF was analyzed using high-performance liquid chromatography analysis, and antimicrobial activity against oral microorganisms was revealed using the disk diffusion test. Cell viability was elucidated using a methylthiazolydiphenyl-tetrazolium bromide assay, and the effect of EEPF on LPS-induced morphological variation was confirmed through microscopic observation. The effect of EEPF on LPS-induced production of pro-inflammatory mediators, NO and PGE2 was confirmed by the NO assay and PGE2 enzyme-linked immunosorbent assay. Results: The main component of EEPF was rosemarinic acid, and EEPF showed weak anti-bacterial and anti-fungal effects against microorganisms living in the oral cavity. EEPF did not show toxicity to Raw264.7 macrophages and had inhibitory effects on the morphological variations and production of pro-inflammatory mediators, NO and PGE2 in LPS-stimulated Raw264.7 macrophages. Conclusion: EEPF can be used as a functional material for improving the oral environment through the control of oral microorganisms and for modulating inflammation by inhibiting the production of inflammatory mediators.

Immunomodulatory Effects of Bifidobacterium spp. and Use of Bifidobacterium breve and Bifidobacterium longum on Acute Diarrhea in Children

  • Choi, Yae Jin;Shin, Seon-Hee;Shin, Hea Soon
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.9
    • /
    • pp.1186-1194
    • /
    • 2022
  • The intake of probiotic lactic acid bacteria not only promotes digestion through the microbiome regulated host intestinal metabolism but also improves diseases such as irritable bowel syndrome and inflammatory bowel disease, and suppresses pathogenic harmful bacteria. This investigation aimed to evaluate the immunomodulatory effects in intestinal epithelial cells and to study the clinical efficacy of the selected the Bifidobacterium breve and Bifidobacterium longum groups. The physiological and biochemical properties were characterized, and immunomodulatory activity was measured against pathogenic bacteria. In order to find out the mechanism of inflammatory action of the eight viable and sonicated Bifidobacterium spp., we tried to confirm the changes in the pro-inflammatory cytokines (TNF-α, interleukin (IL)-6, IL-12) and anti-inflammatory cytokine (IL-10), and chemokines, (monocyte chemoattractant protein-1, IL-8) and inflammatory enzymatic mediator (nitric oxide) against Enterococcus faecalis ATCC 29212 infection in Caco-2 cells and RAW 264.7 cells. The clinical efficacy of the selected B. breve and B. longum group was studied as a probiotic adjuvant for acute diarrhea in children by oral administration. The results showed significant immunomodulatory effects on the expression levels of TNF-α, IL-6, IL-12, MCP-1, IL-8 and NO, in sonicated Bifidobacterium extracts and viable bifidobacteria. Moreover, each of the Bifidobacterium strains was found to react more specifically to different cytokines. However, treatment with sonicated Bifidobacterium extracts showed a more significant effect compared to treatment with the viable bacteria. We suggest that probiotics functions should be subdivided according to individual characteristics, and that personalized probiotics should be designed to address individual applications.

The Effect of Anti-microbial and the Inhibitory Effect of Biofilm Formation and Inflammatory Factors Production of Perillae semen Supercritical Fluid Extracts (초임계 자소자추출물의 항균효과와 바이오필름, 염증매개인자 생성 억제 효능)

  • Lee, Kwang Won;Park, Shinsung;Park, Su In;Shin, Moon Sam
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.615-624
    • /
    • 2022
  • In this study, we assessed anti-oxidant activity, anti-microbial, inhibition of biofilm formation and inflammatory factors(nitric oxide, interleukin-6, interleukin-8) inhibitory effect of Perillae semen hydrothermal extract(PSW) and three kinds of Perillae semen supercritical fluid extract(PSSs) extracted by controlling temperature with no variation of pressure. Compared with PSW, PSSs had significantly lower minimal inhibitory concentrations(MICs) against Staphylococcus aureus(S. aureus) and the ability of PSSs to inhibit formation of biofilm was also superior. PSSs reduce the production of inflammatory mediator and inflammatory cytokines significantly compared to PSW. We suggest, therefore, Perillae semen supercritical fluid 45℃ extract which showed the best anti-microbial, inhibition of biofilm formation, and inhibition of inflammatory factors production among the supercritical fluid extracts could be used for protecting patients with atopic dermatitis from pruritus and transepidermal water loss as a functional ingredient from nature.

Platelet-Activating Factor Potentiates the Activity of Respiratory Burst and Interleukin-1 in Rat Alveolar Macrophages

  • Lee, Ji-Hee
    • The Korean Journal of Physiology
    • /
    • v.29 no.2
    • /
    • pp.251-257
    • /
    • 1995
  • The objective of the present study was to test the effect of platelet-activating factor (PAF) on rat alveolar macrophages. PAF alone did not stimulate superoxide secretion from alveolar macrophages. However, PAF $(10^{-5}\;M)$ significantly enhanced phagocytic activator zymosan-induced superoxide secretion from alveolar macrophages. This enhancement of PAF plus zymosan was 30% above the sum of the separate effects of PAF and zymosan. Similarly, PAF $1.3{\times}(10^{-5}\;M)$ was not a direct stimulant of alveolar macrophages, as it had no stimulatory effect on chemiluminescence generation, but potentiated zymosan-induced activation of chemiluminescence, i.e., 162% above the separate effects of each stimulant. PAF $10^{-16}{\pm}10^{-6}\;M$ also failed to stimulate IL-1 production from alveolar macrophages. In contrast, when both PAF $10^{-10}\;M$ and lipopolysaccharide(LPS) $(1 {\mu}g/ml)$ were added together at the initiation of the culture, IL-1 production was significantly increased indicating the potentiative effects of PAF on IL-1 production by alveolar macrophages. Collectively, these data suggest that PAF alone does not activate the release of bioactive products from alveolar macrophages. However, PAF appears to act as a priming mediator that potentiates stimuli-induced macrophage activity. These novel actions of PAF prove its role as a potent mediator of inflammatory and immune responses in the lung.

  • PDF

Effects of the Grapevine Shoot Extract on Free Radical Scavenging Activity and Inhibition of Pro-inflammatory mediator Production in RAW264.7 Macrophages (포도나무가지 추출물의 프리라디칼 소거 작용 및 염증 발현 매개인자 생성 억제 효과)

  • 허선경;이상국;김선숙;허연회;안수미
    • Biomolecules & Therapeutics
    • /
    • v.9 no.3
    • /
    • pp.188-193
    • /
    • 2001
  • Free radical scavengers or quenching agents for reactive oxygen species (ROS) present in consumable fruits, vegetables, and beverages have received considerable attention as potential antioxidants, and thus uses for treatment of several human diseases. In this study, grapevine shoot extract (GSE) containing high concentration of resveratrol and viniferine was evaluated for antioxidant potential and inhibition of pro-inflam-matory mediator production. Utilizing 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity and xanthine oxidase (XOD) inhibition assay the GSE showed inhibitory effects of DPPH radical scavenging and XOD activity with the $IC_{50}$/ values of 34.5 and 155 $\mu\textrm{g}$/ml, respectively. In addition, GSE also exhibited the inhibition of prostaglandin E$_2$ (PGE$_2$) and nitric oxide (NO) production in lipopolysaccharide (LPS)-induced mouse macrophage RAW264.7 cells with the $IC_{50}$/ value of 6.4 and 14.5 $\mu\textrm{g}$/ml, respectively. This result suggests that grapevine shoot extract has the potential activity as a natural antioxidant or antiinflammatory agent.

  • PDF

Protein Kinase $C-{\alpha}$ Regulates Toll-like Receptor 4-Mediated Inducible Nitric Oxide Synthase Expression

  • Lee, Jin-Gu;Chin, Byung-Rho;Baek, Suk-Hwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.1
    • /
    • pp.28-35
    • /
    • 2008
  • Purpose: The nitric oxide (NO) release by inducible nitric oxide synthase (iNOS) is the key events in macrophage response to lipopolysaccharide (LPS) which is suggested to be a crucial mediator for inflammatory and innate immune responses. NO is an important mediator involved in many host defense action and may also lead to a harmful host response to bacterial infection. However, given the importance of iNOS in a variety of pathophysiological conditions, control of its expression and signaling events in response to LPS has been the subject of considerable investigation. Materials and Methods: The Raw264.7 macrophage cell line was used to observe LPS-stimulated iNOS expression. The expression of iNOS is observed by Western blot analysis and real-time RT-PCR. Protein kinase C $(PKC)-{\alpha}$ overexpressing Raw264.7 cells are established to determine the involvement of $PKC-{\alpha}$ in LPS-mediated iNOS expression. $NF-{\kappa}B$ activity is measured by $I{\kappa}B{\alpha}$ degradation and $NF-{\kappa}B$ luciferase activity assay. Results: We found that various PKC isozymes regulate LPS-induced iNOS expression at the transcriptional and translational levels. The involvement of $PKC-{\alpha}$ in LPS-mediated iNOS induction was further confirmed by increased iNOS expression in $PKC-{\alpha}$ overexpressing cells. $NF-{\kappa}B$ dependent transactivation by LPS was observed and $PKC-{\alpha}$ specific inhibitory peptide abolished this activation, indicating that $NF-{\kappa}B$ activation is dependent on $PKC-{\alpha}$. Conclusion: Our data suggests that $PKC-{\alpha}$ is involved in LPS-mediated iNOS expression and that its downstream target is $NF-{\kappa}B$. Although $PKC-{\alpha}$ is a crucial mediator in the iNOS regulation, other PKC isozymes may contribute LPS-stimulated iNOS expression. This finding is needed to be elucidated in further study.

Anti-inflammatory effects of Rubus coreanus Miquel through inhibition of NF-${\kappa}B$ and MAP Kinase

  • Lee, Jung Eun;Cho, Soo-Muk;Park, Eunkyo;Lee, Seung Min;Kim, Yuri;Auh, Joong Hyuck;Choi, Hyung-Kyoon;Lim, Sohee;Lee, Sung Chul;Kim, Jung-Hyun
    • Nutrition Research and Practice
    • /
    • v.8 no.5
    • /
    • pp.501-508
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: Rubus Coreanus Miquel (RCM), used as a traditional Korean medicine, reduces chronic inflammatory diseases such as cancer and rheumatoid arthritis. However, its mechanism has not been elucidated. In this study, we examine the anti-inflammatory effects of RCM and their possible mechanisms using RAW 264.7 cells. MATERIALS/METHODS: Unripe RCM ethanol extract (UE), unripe RCM water extract (UH), ripe RCM ethanol extract (RE), and ripe RCM water extract (RH) were prepared. Inflammatory response was induced with LPS treatment, and expression of pro-inflammatory mediators (iNOS, COX-2, TNF-${\alpha}$, IL-$1{\beta}$, and IL-6) and NO and $PGE_2$ productions were assessed. To determine the anti-inflammatory mechanism of RCM, we measured NF-${\kappa}B$ and MAPK activities. RESULTS: UE and UH treatment significantly reduced NF-${\kappa}B$ activation and JNK and p38 phosphorylation and reduced transcriptional activities decreased iNOS, COX-2, and pro-inflammatory cytokines expressions, and NO and $PGE_2$ productions. RE and RH treatments reduced IL-$1{\beta}$ and IL-6 expressions through suppressions of JNK and p38 phosphorylation. CONCLUSIONS: In this study, we showed that RCM had anti-inflammatory effects by suppression of pro-inflammatory mediator expressions. Especially, unripe RCM showed strong anti-inflammatory effects through suppression of NF-${\kappa}B$ and MAPK activation. These findings suggest that unripe RCM might be used as a potential functional material to reduce chronic inflammatory responses.

Schisandrae Fructus ethanol extract attenuates particulate matter 2.5-induced inflammatory and oxidative responses by blocking the activation of the ROS-dependent NF-κB signaling pathway

  • Lee, Hyesook;Park, Cheol;Kwon, Da Hye;Hwangbo, Hyun;Kim, So Young;Kim, Min Yeong;Ji, Seon Yeong;Kim, Da Hye;Jeong, Jin-Woo;Kim, Gi-Young;Hwang, Hye-Jin;Choi, Yung Hyun
    • Nutrition Research and Practice
    • /
    • v.15 no.6
    • /
    • pp.686-702
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Schisandrae Fructus, the fruit of Schisandra chinensis Baill., has traditionally been used as a medicinal herb for the treatment of various diseases, and has proven its various pharmacological effects, including anti-inflammatory and antioxidant activities. In this study, we investigated the inhibitory effect of Schisandrae Fructus ethanol extract (SF) on inflammatory and oxidative stress in particulate matter 2.5 (PM2.5)-treated RAW 264.7 macrophages. MATERIALS/METHODS: To investigate the anti-inflammatory and antioxidant effects of SF in PM2.5-stimulated RAW 264.7 cells, the levels of pro-inflammatory mediator such as nitric oxide (NO) and prostaglandin E2 (PGE2), cytokines including interleukin (IL)-6 and IL-1β, and reactive oxygen species (ROS) were measured. To elucidate the mechanism underlying the effect of SF, the expression of genes involved in the generation of inflammatory factors was also investigated. We further evaluated the anti-inflammatory and antioxidant efficacy of SF against PM2.5 in the zebrafish model. RESULTS: The results indicated that SF treatment significantly inhibited the PM2.5-induced release of NO and PGE2, which was associated with decreased inducible NO synthase and cyclooxygenase-2 expression. SF also attenuated the PM2.5-induced expression of IL-6 and IL-1β, reducing their extracellular secretion. Moreover, SF suppressed the PM2.5-mediated translocation of nuclear factor-kappa B (NF-κB) from the cytosol into nuclei and the degradation of inhibitor IκB-α, indicating that SF exhibited anti-inflammatory effects by inhibiting the NF-κB signaling pathway. In addition, SF abolished PM2.5-induced generation of ROS, similar to the pretreatment of a ROS scavenger, but not by an inhibitor of NF-κB activity. Furthermore, SF showed strong protective effects against NO and ROS production in PM2.5-treated zebrafish larvae. CONCLUSIONS: Our findings suggest that SF exerts anti-inflammatory and antioxidant effects against PM2.5 through ROS-dependent down-regulating the NF-κB signaling pathway, and that SF can be a potential functional substance to prevent PM2.5-mediated inflammatory and oxidative damage.

Determination of levels of nitric oxide in smoker and nonsmoker patients with chronic periodontitis

  • Wadhwa, Deepti;Bey, Afshan;Hasija, Mukesh;Moin, Shagufta;Kumar, Arun;Aman, Shazia;Sharma, Vivek Kumar
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.5
    • /
    • pp.215-220
    • /
    • 2013
  • Purpose: Cigarette smoking is a major risk factor in periodontal diseases. The pathogenesis of periodontal diseases may be affected by alterations of the inflammatory response by smoke. Nitric oxide (NO) is a gaseous, colorless, highly reactive, short-lived free radical with a pivotal role in the regulation of various physiological and pathological mechanisms in the body. It is important in host defense and homeostasis, on the one hand, whereas, on the other hand, it modulates the inflammatory response in periodontitis, leading to harmful effects. The aim of this study was to assess the levels of NO in both the serum and saliva of smokers and nonsmokers having chronic periodontitis and to compare them with periodontally healthy controls. Methods: Sixty subjects participated in the study and were divided into three groups: group I, healthy nonsmoking subjects; group II, nonsmoking patients with chronic periodontitis; group III, smoking patients with chronic periodontitis. Each group consisted of twenty subjects. The biochemical estimation of NO in the collected serum and in the saliva was performed using the Griess colorimetric reaction. Results: The results showed that the mean value of the salivary and serum NO was greater in group II than in group I, and also greater in group III than in group II. Conclusions: NO appears to play an important and rather complex role in the immuno-inflammatory process and in the remodeling and maintenance of osseous structures. It is therefore logical that modulation of this mediator has potential for the treatment of a number of inflammatory conditions including periodontal disease.

JAK/STAT Pathway Modulates on Porphyromonas gingivalis Lipopolysaccharide- and Nicotine-Induced Inflammation in Osteoblasts (조골세포에서 Porphyromonas gingivalis Lipopolysaccharide와 니코틴에 의한 염증에 대한 JAK/STAT Pathway의 역할)

  • Han, Yang-keum;Lee, In Soo;Lee, Sang-im
    • Journal of dental hygiene science
    • /
    • v.17 no.1
    • /
    • pp.81-86
    • /
    • 2017
  • Bacterial infection and smoking are an important risk factors involved in the development and progression of periodontitis. However, the signaling mechanism underlying the host immune response is not fully understood in periodontal lesions. In this study, we determined the expression of janus kinase (JAK)/signal transducer and activator of transcription (STAT) on Porphyromonas gingivalis lipopolysaccharide (LPS)- and nicotine-induced cytotoxicity and the production of inflammatory mediators, using osteoblasts. The cells were cultured with 5 mM nicotine in the presence of $1{\mu}g/ml$ LPS. Cell viability was determined using MTT assay. The role of JAK on inflammatory mediator expression and production, and the regulatory mechanisms involved were assessed via enzyme-linked immunosorbent assay, reverse transcription-polymerase chain reaction, and Western blot analysis. LPS- and nicotine synergistically induced the production of cyclooxgenase-2 (COX-2) and prostaglandin $E_2$ ($PGE_2$) and increased the protein expression of JAK/STAT. Treatment with an JAK inhibitor blocked the production of COX-2 and $PGE_2$ as well as the expression of pro-inflammatory cytokines, such as tumor necrosis factor-${\alpha}$, interleukin-$1{\beta}$ ($IL-1{\beta}$), and IL-6 in LPS- and nicotine-stimulated osteoblasts. These results suggest that JAK/STAT is closely related to the LPS- and nicotine-induced inflammatory effects and is likely to regulate the immune response in periodontal disease associated with dental plaque and smoking.