• Title/Summary/Keyword: Inflammatory diseases

Search Result 2,332, Processing Time 0.026 seconds

Mechanism of Human Endogenous Retrovirus (HERV) in Inflammatory Response (인간 내생 레트로바이러스(Human Endogenous Retrovirus, HERV)의 염증반응 조절 기작)

  • Ko, Eun-Ji;Cha, Hee-Jae
    • Journal of Life Science
    • /
    • v.31 no.8
    • /
    • pp.771-777
    • /
    • 2021
  • Human endogenous retroviruses (HERVs) were inserted into the human genome millions of years ago but they are currently inactive and non-infectious due to recombinations, deletions, and mutations after insertion into the host genome. Nonetheless, recent studies have shown that HERV-derived elements are actually involved in physiological phenomena and certain diseases including cancers. Among the various physiological phenomena related to HERV-derived elements, it is necessary to focus on inflammatory response. HERV-derived elements have been reported to be directly involved in various inflammatory diseases, including autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, amyotrophic lateral sclerosis, and Sjogren's syndrome. As a mechanism for regulating inflammation through HERV-derived elements, the possibility that HERV-derived elements may cause nonspecific innate immune processes and that HERV-derived RNA or proteins may cause selective signaling mechanisms through specific receptors can be considered. However, the mechanism through which HERV-derived elements regulate inflammatory response, such as how silent HERV elements are activated in inflammatory response and what factors and signaling mechanisms are involved in HERV-derived elements, have not been identified to date, making it difficult to study the onset of HERV-related inflammatory disease. In this review, we introduce HERV-related autoimmune diseases and propose the mechanisms of HERV-derived elements at the molecular level of HERV in inflammatory response.

Machine learning Anti-inflammatory Peptides Role in Recent Drug Discovery

  • Subathra Selvam
    • Journal of Integrative Natural Science
    • /
    • v.17 no.1
    • /
    • pp.21-30
    • /
    • 2024
  • Several anti-inflammatory small molecules have been found in the process of the inflammatory response, and these small molecules have been used to treat some inflammatory and autoimmune diseases. Numerous tools for predicting anti-inflammatory peptides (AIPs) have emerged in recent years. However, conducting experimental validations in the lab is both resource-intensive and time-consuming. Current therapies for inflammatory and autoimmune disorders often involve nonspecific anti-inflammatory drugs and immunosuppressants, often with potential side effects. AIPs have been used in treating inflammatory illnesses like Alzheimer's disease and can limit the expression of inflammatory promoters. Recent advances in adverse incident predictions (AIPs) have been made, but it is crucial to acknowledge limitations and imperfections in existing methodologies.

Exploring the Mechanisms behind Disease using Mass Spectrometry

  • Byun, Jaeman
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.05a
    • /
    • pp.43-43
    • /
    • 2002
  • Mass spectrometric study of oxidant damage: Generation of endogenous oxidizing species have been implicated in the pathogenesis of a wide variety of diseases from cancer to Alzheimer's Disease to Inflammatory bowel diseases. Antioxidant compounds may therefore be useful in treating or preventing these diseases.(omitted)

  • PDF

Anti-inflammatory Effects of Resveratrol, (-)-Epigallocatechin-3-gallate and Curcumin by the Modulation of Toll-like Receptor Signaling Pathways (Toll-like receptors 신호전달체계 조절을 통한 resveratrol, (-)-epigallocatechin-3-gallate, curcumin의 항염증 효과)

  • Youn, Hyung-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.481-487
    • /
    • 2007
  • Toll-like receptors (TLRs) induce innate immune responses that are essential for host defenses against invading microbial pathogens, thus leading to the activation of adaptive immune responses. In general, TLRs have two major downstream signaling pathways: the MyD88- and TRIF-dependent pathways, which lead to the activation of $NF-{\kappa}B$ and IRF3. Numerous studies have demonstrated that certain phytochemicals possessing anti-inflammatory effects inhibit $NF-{\kappa}B$ activation induced by pro-inflammatory stimuli, including lipopolysaccharides and $TNF{\alpha}$. However, the direct molecular targets for such anti-inflammatory phytochemicals have not been fully identified. Identifying the direct targets of phytochemicals within the TLR pathways is important because the activation of TLRs by pro-inflammatory stimuli can induce inflammatory responses that are the key etiological conditions in the development of many chronic inflammatory diseases. In this paper we discuss the molecular targets of resveratrol, (-)-epigallocatechin-3-gallate (EGCG), and curcumin in the TLR signaling pathways. Resveratrol specifically inhibited the TRIF pathway in TLR3 and TLR4 signaling, by targetting TBK1 and RIP1 in the TRIF complex. Furthermore, EGCG suppressed the activation of IRF3 by targetting TBK1 in the TRIF-dependent signaling pathways. In contrast, the molecular target of curcumin within the TLR signaling pathways is the receptor itself, in addition to $IKK{\beta}$. Together, certain dietary phytochemicals can modulate TLR-derived signaling and inflammatory target gene expression, and in turn, alter susceptibility to microbial infection and chronic inflammatory diseases.

Intestinal anti-inflammatory activity of Sasa quelpaertensis leaf extract by suppressing lipopolysaccharide-stimulated inflammatory mediators in intestinal epithelial Caco-2 cells co-cultured with RAW 264.7 macrophage cells

  • Kim, Kyung-Mi;Kim, Yoo-Sun;Lim, Ji Ye;Min, Soo Jin;Ko, Hee-Chul;Kim, Se-Jae;Kim, Yuri
    • Nutrition Research and Practice
    • /
    • v.9 no.1
    • /
    • pp.3-10
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, involves chronic inflammation of the gastrointestinal tract. Previously, Sasa quelpaertensis leaves have been shown to mediate anti-inflammation and anti-cancer effects, although it remains unclear whether Sasa leaves are able to attenuate inflammation-related intestinal diseases. Therefore, the aim of this study was to investigate the anti-inflammatory effects of Sasa quelpaertensis leaf extract (SQE) using an in vitro co-culture model of the intestinal epithelial environment. MATERIALS/METHODS: An in vitro co-culture system was established that consisted of intestinal epithelial Caco-2 cells and RAW 264.7 macrophages. Treatment with lipopolysaccharide (LPS) was used to induce inflammation. RESULTS: Treatment with SQE significantly suppressed the secretion of LPS-induced nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), IL-6, and IL-$1{\beta}$ in co-cultured RAW 264.7 macrophages. In addition, expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, and tumor necrosis factor (TNF)-${\alpha}$ were down-regulated in response to inhibition of $I{\kappa}B{\alpha}$ phosphorylation by SQE. Compared with two bioactive compounds that have previously been identified in SQE, tricin and P-coumaric acid, SQE exhibited the most effective anti-inflammatory properties. CONCLUSIONS: SQE exhibited intestinal anti-inflammatory activity by inhibiting various inflammatory mediators mediated through nuclear transcription factor kappa-B (NF-kB) activation. Thus, SQE has the potential to ameliorate inflammation-related diseases, including IBD, by limiting excessive production of pro-inflammatory mediators.

The Regulatory Effect of Zhengan Xifeng-tang on Pro-inflammatory Cytokine in Human Brain Astrocytes (인간 뇌 성상세포에서 진간식풍탕의 사이토카인 조절 효과)

  • Ryu Hyun Hee;Lee Seoung Geun;Lee Key Sang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.490-495
    • /
    • 2004
  • Brain cells produce cytokines and chemokines during the inflammatory process of many neuronal diseases both in animal models and in patients. Inflammatory cytokines are the main responsible for the onset of inflammatory cascade. During the past decade, a growing corpus of evidence has indicated an important role of these cytokines in the development of brain damage. ZhenganXifeng-tang (ZGXFT) is a Korean herbal prescription, which has been successfully applied for the treatment of various neuronal diseases. However, its effect in experimental models remains unknown. Astrocytes are predominant neuroglial cells of the central nervous system and are actively involved in cytokine-mediated events in inflammatory disease. An inflammatory response associated with β-amyloid (Aβ) and interleukin (IL)-1β is responsible for the pathology of inflammation disease. To investigate the biological effect of ZGXFT, the author examined cytotoxicity, effect of cytokines (IL-6 and IL-8) secretion and expression of cyclooxygenase-2 (COX-2) on human astrocytoma cell line U373MG stimulated with IL-1β plus M fragment 25-35 (Aβ [25-35]). ZGXFT by itself had no effect on cell viability on human astrocytoma cells. The secretion of IL-6 and IL-8 was inhibited by pre-treatment with ZGXFT in human astrocytoma cells. In addition, the expression of COX-2 was induced by IL-1β plus AB[25-35] and was partially inhibited by treatment with ZGXFT. The author demonstrates the regulatory effects of inflammatory reactions by ZGXFT in human astrocytes for the first time and suggest the anti-inflammatory effect of ZGXFT may reduce and delay pathologic events of inflammatory disease.

Anti-Inflammatory and Antioxidative Effects of Gracilaria textorii Ethanol Extract in LPS-PG-Stimulated Human Gingival Fibroblast-1 Cells (사람 치은섬유모세포에서 잎꼬시래기 에탄올 추출물의 항염증 및 항산화 효과)

  • Park, Chungmu;Yoon, Hyunseo
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.7 no.4
    • /
    • pp.61-69
    • /
    • 2019
  • Purpose : Human gingival fibroblast cell is one of the the main cell types in periodontal tissue, which they can show anti-inflammatory activity through the production of numerous lines of inflammatory mediators such as inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and interleukins. Porphyromonas gingivalis, one of the oral pathogens, has reported to play a critical role in the development of periodontal diseases. This study aimed to investigate anti-inflammatory and antioxidative activities of Gracilaria textorii ethanol extract (GTEE) in P. gingivalis derived lipopolysaccharide (LPS-PG) stimulated human gingival fibroblast (HGF)-1 cell line. Methods : In order to analyze anti-inflammatory and antioxidative activities of GTEE in HGF-1 cell line, NOS enzyme activity, expression levels of iNOS, COX-2, NAD(P)H quinone dehydrogenase (NQO)1 and their transcription factors were estimated by Griess reaction and western hybridization. Results : LPS-PG induced overexpression of iNOS and COX-2, which was significantly attenuated by GTEE treatment in a dose-dependent manner without any cytotoxicity. In addition, intracellular NOS activity was in accordance with the result of iNOS expression. Due to important role in the regulation of inflammatory responses, phosphorylated status of p65 and c-jun, each subunit of nuclear factor (NF)-κB and activator protein (AP)-1, was also dose-dependently ameliorated by GTEE treatment. One of phase II enzymes, NQO1, and its transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), were analyzed since elevated phase II enzyme expression inhibited inflammatory response, which was significantly elevated by GTEE treatment in HGF-1 cell line. Conclusion : In conclusion, GTEE mitigated LPS-PG-stimulated inflammatory responses by attenuating NF-κB and AP-1 activation as well as accelerating NQO1 and Nrf2 expression in HGF-1 cell line. These results indicate that GTEE might be utilized a promising strategy for potential anti-inflammatory agent in periodontal diseases.

Anti-inflammatory Effect of Heracleum moellendorffii Roots through the Inhibition of NF-κB and MAPK Signaling, and Activation of ROS/Nrf2/HO-1 Signaling in LPS-stimulated RAW264.7 Cells

  • Park, Su Bin;Kim, Ha Na;Kim, Jeong Dong;Jeong, Jin Boo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.66-66
    • /
    • 2019
  • Heracleum moellendorffii roots (HM-R) have been long treated for inflammatory diseases such as arthritis, backache and fever. However, an anti-inflammatory effect and the specific mechanism of HM-R were not yet clear. In this study, we for the first time explored the anti-inflammatory of HM-R. Results: HM-R dose-dependently blocked LPS-induced NO and PGE2 production. In addition, HM-R inhibited LPS-induced overexpression of iNOS, COX-2, $IL-1{\beta}$ and IL-6 in RAW264.7 cells. HM-R inhibited LPS-induced $NF-{\kappa}B$ signaling activation through blocking $I{\kappa}B-{\alpha}$ degradation and p65 nuclear accumulation. Furthermore, HM-R inhibited MAPK signaling activation by attenuating the phosphorylation of ERK1/2, p38 and JNK. HM-R increased nuclear accumulation of Nrf2 and HO-1 expression. However, NAC reduced the increased nuclear accumulation of Nrf2 and HO-1 expression by HM-R. In HPLC analysis, falcarinol was detected from HM-R as an anti-inflammatory compound. These results indicate that HM-R may exert anti-inflammatory activity by inhibiting $NF-{\kappa}B$ and MAPK signaling, and activating ROS/Nrf2/HO-1 signaling. From these findings, HM-R may have potential to be a candidate for the development of anti-inflammatory drugs.

  • PDF

The Acetylation-based synthesis of 3,3',4',5,5',7-hexaacetate myricetin and evaluation of its anti-inflammatory activities in lipopolysaccharide-induced RAW264.7 mouse macrophage cells

  • Kristina Lama;Hyehyun Hong;Tae-Jin Park;Jin-Soo Park;Won-Jae Chi;Seung-Young Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.29-38
    • /
    • 2023
  • Recent studies have highlighted the link between diseases and inflammation across our lifespan. Our sedentary lifestyle, high-calorie diet, chronic stress, chronic infections, and exposure to pollutants and xenobiotics, collectively intensify the course and recurrence of infections and inflammation in our bodies, promoting the prevalence of chronic diseases and aging. Given such phenomena and considering additional factors such as the frequency of prescription, and easy access to over-the-counter drugs, the need for anti-inflammatory therapeutics is ever-increasing. However, the readily available anti-inflammatory treatment option comes with a greater risk of side effects or high cost (biologics). Therefore in this growing competition of discovering and developing new potent anti-inflammatory drugs, we focused on utilizing the established knowledge of traditional medicine to find lead compounds. Since lead optimization is an indispensable step toward drug development, we applied this concept for the production of potent anti-inflammatory compounds achieved by structural modification of flavonoids. The derivative obtained through acetylation of myricetin, 3,3',4',5,5',7-hexaacetate myricetin, showed a greater inhibitory effect in the production of pro-inflammatory mediators such as nitric oxide, Prostaglandin E2, and pro-inflammatory cytokines like interleukin-6, interleukin1β, in lipopolysaccharide-stimulated RAW264.7 mouse macrophage cells compared to myricetin. The increased potency of inhibition was in conjunction with an increased inhibitory effect on inducible nitric oxide synthase and cyclooxygenase-2 proteins. Through such measures, this study supports lead optimization for well-established lead compounds from traditional medicine using a simpler and greener chemistry approach for the purpose of designing and developing potent anti-inflammatory therapeutics with possibly fewer side effects and increased bioavailability.

The Inhibitory Effects of Lactose-${\beta}$-sitosterol on the Inflammatory Responses of HMC-1 Cells and EoL-1 Cells

  • Yang, Eun-Ju;Kim, In-Sik
    • Biomedical Science Letters
    • /
    • v.17 no.3
    • /
    • pp.217-223
    • /
    • 2011
  • ${\beta}$-sitosterol glucoside exists in a variety of plants and have anti-tumor, anti-microbial, and immunomodulatory activities. Mast cells and eosinophils play important roles in a variety of inflammatory diseases, specifically asthma and atopic dermatitis. In the present study, we used lactose-${\beta}$-sitosterol (L-BS) and investigated the effect of L-BS on inflammatory responses of the human mast cell line, HMC-1 and the human eosinophilic leukemia cell line, EoL-1. In HMC-1 cells, L-BS significantly inhibited cell migration in response to stem cell factor without cytotoxicity. However, the mRNA expression of CC chemokine receptors (CCRs), including CCR1-5, were not altered after L-BS treatment in HMC-1 cells. LPS-induced IL-4 production was also suppressed by L-BS in a dose-dependent manner. In EoL-1 cells, the concentration ranging from 0.1 ${\mu}M$ to 10 ${\mu}M$ of L-BS had no cytotoxicity and had no effect on mRNA expression of major protein-mediators derived from activated eosinophils. However, 100 ${\mu}M$ of L-BS induced the apoptosis of EoL-1 cells in a time-dependent manner. This finding indicates the possibility of L-BS as a potential therapeutic molecule in inflammatory diseases and may contribute to the need to improve current therapeutic drugs.