• Title/Summary/Keyword: Inflammatory cells

Search Result 4,910, Processing Time 0.033 seconds

차가버섯 물 추출물의 추출온도에 따른 효능 비교 연구(II) -항산화 효능, 소염 및 항암 효과 연구- (The Comparative Study of the Effects of Fructificatio Inonoti Obliqui Aqueous Extract according to the Extraction Temperature(II) -Anti-oxidativy Activity, anti inflammatory effect and cancer cell multiplication inhibition effect-)

  • 박규천;한효상;이영종
    • 대한본초학회지
    • /
    • 제22권4호
    • /
    • pp.187-199
    • /
    • 2007
  • Objectives : The present study purposed to compare the antioxidant effect, anti inflammatory effect and cancer cell multiplication inhibition effect of Fructificatio Inonoti Obliqui aqueous extract according to extraction temperature. Methods : We medicated animal models, which had experimental oxidation, with Fructificatio Inonoti Obliqui total extract and $50^{\circ}C$ low temperature leachate, and performed hematological analysis and blood chemical analysis with measuring SOD, GSH, catalase, NO and MDA content in the liver. In addition, we made comparative observation of anti inflammatory effect and anti-cancer effect. Results : Compared to the control group, both the group medicated with Fructificatio Inonoti Obliqui total extract and with $50^{\circ}C$ low-temperature leachate were found to decrease the number of thrombocytes in blood plasma and NO content while to increase SOD activity and catalase activity significantly. Both groups also showed anti-inflammatory effect against THP-1 cells and a multiplication inhibition effect against liver cancer cells and stomach cancer cells significantly. Conclusions : Both Fructificatio Inonoti Obliqui total extract and Fructificatio Inonoti Obliqui $50^{\circ}C$ low-temperature leachate have significant antioxidant effect, anti inflammatory effect and anti cancer effect.

  • PDF

천심련(穿心蓮) 메탄올 추출물의 항염증효과 (Anti-inflammatory Effects of Andrographis Herba MeOH Extract on LPS-induced Raw 264.7 Cells)

  • 정지윤;박정아
    • 대한한의학방제학회지
    • /
    • 제28권2호
    • /
    • pp.147-155
    • /
    • 2020
  • PURPOSE : Andrographis Herba is used as a traditional herbal medicine in the Asian countries for the treatment common cold, fever, diabetes, hypertension, hepatitis, skin infections, snake bite, and other diseases. In this study, we investigated the anti-inflammatory effect of MeOH extract of Andrographis Herba (AHME) on LPS-activated Raw 264.7 cells. METHODS : Cell viability was determined by MTT assay. Nitric oxide (NO) production was determined by Griess reagent. Pro-inflammatory cytokines were detected by enzyme-linked immunosorbent assay. Expression levels of pro-inflammatory proteins were determined by Western blot analysis. RESULTS : Production of NO in LPS activated Raw 264.7 cells, was significantly decreased by pre-treatment with 3-30 ㎍/mL of AHME. Production of pro-inflammatory mediators such as TNF-α and IL were significantly decreased by AHME 30 ㎍/mL pre-treatment. AHME significantly decreased p-IκB and NF-κB expression. CONCLUSION : The results of this study indicate that AHME could inhibit the acute inflammatory response, via modulation of NF-κB activation.

2-(4-Hydroxyphenyl)-5-(3-Hydroxypropenyl)-7-Methoxybenzofuran, a Novel Ailanthoidol Derivative, Exerts Anti-Inflammatory Effect through Downregulation of Mitogen-Activated Protein Kinase in Lipopolysaccharide-Treated RAW 264.7 Cells

  • Kim, Hyeon Jin;Jun, Jong-Gab;Kim, Jin-Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권3호
    • /
    • pp.217-222
    • /
    • 2013
  • We reported that ailanthoidol, a neolignan from Zanthoxylum ailanthoides and Salvia miltiorrhiza Bunge, inhibited inflammatory reactions by macrophages and protected mice from endotoxin shock. We examined the anti-inflammatory activity of six synthetic ailanthoidol derivatives (compounds 1-6). Among them, compound 4, 2-(4-hydroxyphenyl)-5-(3-hydroxypropenyl)-7-methoxybenzofuran, had the lowest $IC_{50}$ value concerning nitric oxide (NO) release from lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Compound 4 suppressed the generation of prostaglandin (PG) $E_2$ and the expression of inducible NO synthase and cyclooxygenase (COX)-2 induced by LPS, and inhibited the release of LPS-induced pro-inflammatory cytokines from RAW264.7 cells. The underlying mechanism of compound 4 on anti-inflammatory action was correlated with the down-regulation of mitogen-activated protein kinase and activator protein-1 activation. Compound 4 is potentially an effective functional chemical candidate for the prevention of inflammatory diseases.

Chitin from Cuttlebone Activates Inflammatory Cells to Enhance the Cell Migration

  • Lim, Sung Cil;Lee, Ki-Man;Kang, Tae Jin
    • Biomolecules & Therapeutics
    • /
    • 제23권4호
    • /
    • pp.333-338
    • /
    • 2015
  • Our previous report showed that the extract from cuttlebone (CB) had wound healing effect in burned lesion of rat and the extract was identified as chitin by HPLS analysis. We herein investigated the morphology in CB extract using scanning electron microscope (SEM). Chitin was used as a control. There is no difference in morphology between CB extract and chitin. We also assessed the role of CB extract on the production of inflammatory mediators using murine macrophages and the migration of inflammatory cells. The extract induced the production of nitric oxide (NO) in macrophages. While the extract of CB itself stimulated macrophages to increase the expression of pro-inflammatory cytokines such as tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-$1{\beta}$, and IL-6, CB extract suppressed the production of those cytokines by LPS. CB extract also induced the production of mouse IL-8 which is related to the cell migration, and treatment with CB enhanced fibroblast migration and invasion. Therefore, our results suggest that CB activates inflammatory cells to enhance the cell migration.

Anti-inflammatory Effect of Leaves Extracts from Aralia cordata through Inhibition of NF-κB and MAPKs Signaling in LPS-stimulated RAW264.7 Cells

  • Ji, Eo Hyun;Kim, Da Som;Sim, Su Jin;Park, Gwang Hun;Song, Jeong Ho;Jeong, Jin Boo;Kim, Nahyun
    • 한국자원식물학회지
    • /
    • 제31권6호
    • /
    • pp.634-640
    • /
    • 2018
  • Aralia cordata (A. cordata), which belongs to Araliaceae, is a perennial herb widely distributed in East Asia. We evaluated the anti-inflammatory effect of stems (AC-S), roots (AC-R) and leaves (AC-L) extracted with 100% methanol of A. cordata and elucidated the potential signaling pathway in LPS-stimulated RAW264.7 cells. The AC-L showed a strong anti-inflammatory activity through inhibition of NO production. AC-L dose-dependently inhibited NO production by suppressing iNOS, COX-2 and $IL-{\beta}$ expression in LPS-stimulated RAW264.7 cells. AC-L inhibited the degradation and phosphorylation of $I{\kappa}B-{\alpha}$, which donated to the inhibition of p65 nuclear accumulation and $NF-{\kappa}B$ activation. Furthermore, AC-L suppressed the phosphorylation of ERK1/2 and p38. These results suggested that AC-L may utilize anti-inflammatory activity by blocking $NF-{\kappa}B$ and MAPK signaling pathway and indicated that the AC-L can be used as a natural anti-inflammatory drugs.

LPS로 유도된 RAW 264.7 대식세포에 대한 미역(Undaria pinnatifida) Ethyl Acetate 분획물의 항염증 효과 (Anti-Inflammatory Effect of Ethyl Acetate Fraction Isolated from Undaria pinnatifida on Lipopolysaccharides-Stimulated RAW 264.7 Cells)

  • 최민우;김재일
    • 한국수산과학회지
    • /
    • 제46권4호
    • /
    • pp.384-392
    • /
    • 2013
  • An ethanolic extract of Undaria pinnatifida was fractionated using several solvents. Of the fractions, the ethyl acetate fraction had the greatest inhibitory effect on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 macrophage cells. Using this fraction (U. pinnatifida ethyl acetate extract, UPE), we investigated the molecular mechanism underlying its inhibitory effect on LPS-stimulated RAW 264.7 cells. Pretreatment of the cells with up to $100{\mu}g/mL$ UPE significantly inhibited NO production and inducible nitric oxide synthase (iNOS) expression, in a dose-dependent manner. Similarly, UPE treatment markedly reduced the production of pro-inflammatory cytokines, such as interleukin (IL)-1, IL-6 and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), while it strongly suppressed the nuclear translocation of nuclear factor-kappa B (NF-${\kappa}B$) by preventing proteolytic degradation of inhibitor of nuclear factor ${\kappa}B$ $(I{\kappa}B)-{\alpha}$. Moreover, UPE treatment significantly reduced the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK) in LPS-stimulated cells. These results indicate that UPE contains anti-inflammatory compounds and suggest that it might be used as a functional food material that assists in prevention of inflammatory diseases.

Anti-Inflammatory Effect of Asterias amurensis Fatty Acids through NF-κB and MAPK Pathways against LPS-Stimulated RAW264.7 Cells

  • Monmai, Chaiwat;Go, Seok Hyeon;Shin, Il-sik;You, SangGuan;Kim, Dae-ok;Kang, SeokBeom;Park, Woo Jung
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권10호
    • /
    • pp.1635-1644
    • /
    • 2018
  • Asterias amurensis (starfish) is a marine organism that is harmful to the fishing industry, but is also a potential source of functional materials. The present study was conducted to analyze the profiles of fatty acids extracted from A. amurensis tissues and their anti-inflammatory effects on RAW264.7 macrophage cells. In different tissues, the component ratios of saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids differed; particularly, polyunsaturated fatty acids such as dihomo-gamma-linolenic acid (20:3n-6) and eicosapentaenoic acid (20:5n-3) were considerably different. In lipopolysaccharide-stimulated RAW264.7 cells, fatty acids from A. amurensis skin, gonads, and digestive glands exhibited anti-inflammatory activities by reducing nitric oxide production and inducing nitric oxide synthase gene expression. Asterias amurensis fatty acids effectively suppressed the expression of inflammatory cytokines such as tumor necrosis $factor-{\alpha}$, interleukin-$1{\beta}$, and interleukin-6 in lipopolysaccharide-stimulated cells. Cyclooxygenase-2 and prostaglandin $E_2$, which are critical inflammation biomarkers, were also significantly suppressed. Furthermore, A. amurensis fatty acids reduced the phosphorylation of nuclear $factor-{\kappa}B$ p-65, p38, extracellular signal-related kinase 1/2, and c-Jun N-terminal kinase, indicating that these fatty acids ameliorated inflammation through the nuclear $factor-{\kappa}B$ and mitogen-activated protein kinase pathways. These results provide insight into the anti-inflammatory mechanism of A. amurensis fatty acids on immune cells and suggest that the species is a potential source of anti-inflammatory molecules.

대장 상피세포에서 p-Hydroxycinnamic Acid의 항염증 효과와 염증성 장질환에 대한 치료 효과 (Anti-inflammatory Effect of p-Hydroxycinnamic Acid on HT-29 Intestinal Cells and Its Therapeutic Effect of Immune Bowel Disease)

  • 이현수;이승호;최혁재;정길생
    • 생약학회지
    • /
    • 제51권2호
    • /
    • pp.107-114
    • /
    • 2020
  • Inflammatory bowel disease (IBD) is a chronic inflammatory disorder on the large intestine that has been considered as an incurable not only in Western society but also in Eastern Asia in recent years. Despite enormous efforts to develop novel therapeutics for this disease, strategy using bioactive compounds from natural product is still considered as important. p-hydroxycinnamic acid (HCA) is an intermediate substance found in several plants and has been known to possess anti-inflammation but little evidence is reported whether HCA has an inhibitory effect on intestinal inflammation. In the present study, we observed HCA does not show cytotoxic and apoptotic in HT-29 cells. Quantitative PCR analysis revealed that HCA effectively blocks the activity of HT-29 cells stimulated with TNF-α treatment. HCA inhibits translocation of p65 and MAPK pathways in activated HT-29 cells by TNF-α treatment. Besides, oral administration of HCA attenuates manifestation of DSS-induced inflammatory disease in vivo. Histological analysis exhibited that oral administration of HCA recovers IBD symptoms. The expression of pro-inflammatory cytokines were reduced by oral administration of HCA on intestinal tissues. Therefore, these results suggest that HCA has a potent anti-inflammatory effect on intestinal cells as well as show a therapeutic potential for treating IBD in vivo.

L1 Cell Adhesion Molecule에 의한 대식세포 매개 염증반응의 억제 기전 분석 (L1 Cell Adhesion Molecule Suppresses Macrophage-mediated Inflammatory Responses)

  • 이영수
    • 약학회지
    • /
    • 제60권3호
    • /
    • pp.128-134
    • /
    • 2016
  • L1 cell adhesion molecule (L1CAM) is a cell surface molecule to initiate a variety of cellular responses through interacting with other cell adhesion molecules in a homophilic or heterophilic manner. Although its expression was found to be upregulated in some tumor cells, including cholangiocarcinomas, and ovarian cancers, and many studies have investigated the role of L1CAM in these cancers, its role in inflammatory responses has been poorly understood. In this study, we explored the role of L1CAM in macrophage-mediated inflammatory responses. L1CAM significantly suppressed the production of nitric oxide (NO), but induced cell proliferation in RAW264.7 cells. L1CAM expression was detectable, but its expression was markedly decreased by lipopolysaccharide (LPS) in RAW264.7 cells. In addition, the expression of pro-inflammatory genes, such as tumor necrosis factor (TNF)-${\alpha}$, cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) induced by LPS was dramatically suppressed by L1CAM in RAW264.7 cells. L1CAM inhibited the transcriptional activities of NF-${\kappa}B$ and AP-1 while its cytoplasmic domain deletion form, $L1{\Delta}CD$ did not suppressed their activities in RAW264.7 cells. Moreover, L1CAM suppressed nuclear translocation of p65 and p50 as well as c-Jun, c-Fos and p-ATF2 which are transcription factors of NF-${\kappa}B$ and AP-1, respectively. In conclusion, L1CAM suppressed inflammatory responses in macrophages through inhibiting NF-${\kappa}B$ and AP-1 pathways.

Anti-inflammatory Effects of Sam-chul-kun-bi-tang

  • Lee, Jin-Ah;Ha, Hye-Kyung;Jung, Da-Young;Lee, Ho-Young;Lee, Nam-Hun;Lee, Jun-Kyoung;Huang, Dae-Sun;Shin, Hyeun-Kyoo
    • 대한한의학회지
    • /
    • 제31권3호
    • /
    • pp.47-54
    • /
    • 2010
  • Objective: To derive information on the efficacy of Sam-chul-kun-bi-tang (SKT), by evaluating its anti-inflammatory effect. SKT is a widely-used herbal formula in traditional Korean medicine. In man y studies, plant-derived anti-inflammatory efficacies have been investigated for their potential inhibitory effects on lipopolysaccharide (LPS)-stimulated macrophages. This study was performed to examine the anti-inflammatory effects of SKT extract on LPS-stimulated RAW 264.7 cells. Methods: The production of nitric oxide (NO), prostaglandin $(PG)E_2$, tumor necrosis factor (TNF)-$\alpha$ and interleukin (IL)-6 were examined in a macrophage cell line, RAW 264.7 cells, in the presence of SKT. RAW 264.7 cells were incubated with LPS 1 ${\mu}g/mL$ and SKT for 18 hrs. The anti-inflammatory activity of SKT was investigated by carrageenan-induced paw edema in rats. The paw volume was measured at 2 and 4 hrs following carrageenan-induced paw edema in rats. Results: SKT showed inhibitory effect on $PGE_2$, TNF-$\alpha$ and IL-6 in LPS-stimulated RAW 264.7 cells. But SKT was not inhibitory effect on NO by LPS-stimulated RAW 264.7 cells. Administration of SKT (1 g/kg) also showed a reduction in carrageenan-induced paw edema on rats. Conclusion: These results suggest that SKT has anti-inflammatory activities in both in vitro and in vivo models.