• Title/Summary/Keyword: Inflammatory cells

Search Result 4,910, Processing Time 0.03 seconds

A primo vessel-like structure in a dog with inflammatory pseudotumor

  • Cho, Sung-Jin;Hong, Sun-Hwa;Han, Sang-Jun;Kim, Ok-Jin
    • Korean Journal of Veterinary Service
    • /
    • v.35 no.1
    • /
    • pp.77-82
    • /
    • 2012
  • Inflammatory pseudotumor (IPT) is a term defining a mass characterized microscopically by a proliferation of bland mesenchymal spindle cells infiltrated by diffuse mixed inflammatory cells with a predominance of plasma cells and lymphocytes. Here, we show the primo vessel-like structure of the primo-vascular system (PVS) in a dog with IPT. A 6-years old male Mongrel dog was diagnosed with an abnormal mass (diameter 5.5 cm, weight 22 g) near left preputial area. The dog was submitted to the surgical detectomy of the mass. During the surgical operation, we observed primo vessel-like material. After fixations, the masses appeared macroscopically as lipoid-like, firm, white to grey masses, measuring $5{\times}8cm$. Histologically, cellular infiltration into the muscular layers was frequently seen. The mesenchymal proliferation remained the main component of the mass and was composed of myofibroblastic-like spindle cells characterized by globular, irregular nuclei containing open chromatin and a prominent nucleolus. On the basis of the histopathologic lesions, the subcutaneous mass was diagnosed as IPT. Also, we detected a primo vessel-like structures in some areas of the IPT tissues. These were observed as novel thread-like structures and bundle of tubular structures. To our knowledge, this report is the first case of primo vessel-like structure in a dog with IPT.

Anti-inflammatory Effect of Imyosan Extract is more potent than that of its Component Herb Extracts in Murine Macrophages (마우스 대식세포인 RAW 264.7에 대한 이묘산(二妙散)의 메탄올 추출물의 항염증 효과)

  • Yun, Hyun-Jeong;Park, Sun-Dong
    • The Korea Journal of Herbology
    • /
    • v.23 no.3
    • /
    • pp.163-173
    • /
    • 2008
  • Objectives : Imyosan (IMS), a drug preparation comprised of Phellodendri Cortex (PC) and Atractylodis Rhizoma (AR), is commonly used as a traditional herbal medicine in Korea and China for the treatment of various inflammatory diseases. However, little is known about the effect of IMS and its component herbs on inflammatory mediators in RAW 264.7 cells. Therefore, in this study, methanol extracts of IMS and its component herbs were examined to determine if they inhibited inflammatory effects in RAW 264.7 cells. Methods : Cytotoxic activity of IJHT and its components on RAW 264.7 cells was using 5-(3-carboxymethoxyphenyl)-2H-tetrazolium inner salt (MTS) assay. The nitric oxide (NO) production was measured by Griess reagent system. And proinflammatory cytokines were measured by ELISA kit. The levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression were detected by western blot. Results : Methanol extract of IMS and its component herbs were significantly reduced iNOS and COX-2 expression as well as NO, PGE2, $IL-1{\beta}$ and IL-6 production in RAW 264.7 cells. Conclusions : The results of this study indicated that the anti-inflammatory effect of Imyosan extract is more potent than that of extracts of its component herbs in macrophages.

  • PDF

Inhibitory effects of fenbendazole, an anthelmintics, on lipopolysaccharide-activated mouse bone marrow cells (지질다당류로 활성화된 마우스 골수세포에서 구충제 Fenbendazole의 억제 효과)

  • Park, Seo-Ro;Joo, Hong-Gu
    • Korean Journal of Veterinary Research
    • /
    • v.61 no.3
    • /
    • pp.22.1-22.7
    • /
    • 2021
  • Fenbendazole (FBZ) is a commonly used anthelmintics in veterinary medicine that has recently been found to have anticancer effects in humans. On the other hand, few studies have examined the anti-inflammatory effects of FBZ, and its mechanism is unknown. In this study, mouse bone marrow cells (BMs) were treated with lipopolysaccharide (LPS), a representative inflammation-inducing substance, to generate a situation similar to osteomyelitis in vitro. The effect of FBZ on inflammatory BMs was examined by measuring the metabolic activity, surface marker expression, cell nuclear morphology, and mitochondrial membrane potential (MMP) of BMs. FBZ decreased the metabolic activity and MMP of LPS-treated BMs. Annexin V-fluorescein isothiocyanate/propidium iodide staining and Hoechst 33342 staining showed that FBZ reduced the number of viable cells and induced the cell death of inflammatory BMs. In addition, FBZ reduced the proportion of granulocytes more than B lymphocytes in LPS-treated BMs. Overall, FBZ induces cell death by destabilizing the MMP of LPS-induced inflammatory BMs. In addition to anthelmintic and anticancer agent, FBZ can play a role as an anti-inflammatory agent.

Carboxymethyl Chitosan Promotes Migration and Inhibits Lipopolysaccharide-Induced Inflammatory Response in Canine Bone Marrow-Derived Mesenchymal Stem Cells

  • Ryu, Ho-Sung;Ryou, Seong-Hwan;Jang, Min;Ku, Sae-Kwang;Kwon, Young-Sam;Seo, Min-Soo
    • Journal of Veterinary Clinics
    • /
    • v.38 no.6
    • /
    • pp.261-268
    • /
    • 2021
  • The study was conducted to evaluate the effects of carboxymethyl chitosan (CMC) on proliferation, migration, and lipopolysaccharide (LPS)-induced inflammatory response in canine bone marrow-derived mesenchymal stem cells (BMSCs). The proliferation and migration of BMSCs were examined after treatment with CMC. The effect of CMC on the mRNA expression of inflammatory cytokines, such as interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, IL-10, and transforming growth factor (TGF)-β, was also evaluated by reverse transcription polymerase chain reaction (RT-PCR). In the proliferation assay, no significant changes were found at all CMC concentrations compared with controls. The migration assay showed that CMC dose-dependently stimulated the migration of BMSCs in normal and LPS-treated conditions. RT-PCR showed that TNF-α and IL-10 expressions were suppressed in the BMSCs after CMC treatment. However, other genes were not affected. Taken together, CMC promoted BMSC migration and inhibited TNF-α and IL-10. Therefore, CMC may be possible to regulate wound healing when mesenchymal stem cells are applied in inflammatory diseases.

Effect of Actinidia polygama on LPS-induced Inflammation in Mouse BV2 Microglial cells (목천료자(木天蓼子)가 LPS로 유되된 Mouse BV2 Microglial cells의 염증반응에 미치는 영향)

  • Kim, Kitae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.36 no.4
    • /
    • pp.120-124
    • /
    • 2022
  • Actinidia polygama has long been used in traditional Korean medicine to treat rheumatoid arthritis and gout. Although numerous chemical compounds in the fruit extracts of A. polygama have been characterized and their role in inhibiting nitric oxide (NO) production has been reported, the anti-inflammatory properties of A. polygama extracts remain to be explored. In this study, we investigated the in-vivo effect of A. polygama extract on lipopolysaccharide (LPS)-induced inflammation in BV-2 microglial cell lines. We discovered that 100% ethyl alcohol extract of A. polygama effectively attenuates the release of NO and is superior to both water extract and 50% ethanol extract. Using MTT assay, western blot, and ELISA on LPS-induced BV-2 microglial cells lines, we established the ability of A. polygama extract to markedly suppress the expressions of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and pro-inflammatory cytokines, such as tumor necrosis factor alpha and interleukin-6. These results reveal that the anti-inflammatory property of A. polygama in BV-2 microglial cells is due to the downregulation of iNOS, COX-2, MAPK protein, and pro-inflammatory cytokines.

Wheat phytase potentially protects HT-29 cells from inflammatory nucleotides-induced cytotoxicity

  • Jeongmin An;Jaiesoon Cho
    • Animal Bioscience
    • /
    • v.36 no.10
    • /
    • pp.1604-1611
    • /
    • 2023
  • Objective: The aim of this study was to investigate the protective effect of wheat phytase as a structural decomposer of inflammatory nucleotides, extracellular adenosine triphosphate (ATP), and uridine diphosphate (UDP) on HT-29 cells. Methods: Phosphatase activities of wheat phytase against ATP and UDP was investigated in the presence or absence of inhibitors such as L-phenylalanine and L-homoarginine using a Pi Color Lock gold phosphate detection kit. Viability of HT-29 cells exposed to intact- or dephosphorylated-nucleotides was analyzed with an EZ-CYTOX kit. Secretion levels of pro-inflammatory cytokines (IL-6 and IL-8) in HT-29 cells exposed to substrate treated with or without wheat phytase were measured with enzyme-linked immunosorbent assay kits. Activation of caspase-3 in HT-29 cells treated with intact ATP or dephosphorylated-ATP was investigated using a colorimetric assay kit. Results: Wheat phytase dephosphorylated both nucleotides, ATP and UDP, in a dose-dependent manner. Regardless of the presence or absence of enzyme inhibitors (L-phenylalanine and L-homoarginine), wheat phytase dephosphorylated UDP. Only L-phenylalanine inhibited the dephosphorylation of ATP by wheat phytase. However, the level of inhibition was less than 10%. Wheat phytase significantly enhanced the viability of HT-29 cells against ATP- and UDP-induced cytotoxicity. Interleukin (IL)-8 released from HT-29 cells with nucleotides dephosphorylated by wheat phytase was higher than that released from HT-29 cells with intact nucleotides. Moreover, the release of IL-6 was strongly induced from HT-29 cells with UDP dephosphorylated by wheat phytase. HT-29 cells with ATP degraded by wheat phytase showed significantly (13%) lower activity of caspase-3 than HT-29 cells with intact ATP. Conclusion: Wheat phytase can be a candidate for veterinary medicine to prevent cell death in animals. In this context, wheat phytase beyond its nutritional aspects might be a novel and promising tool for promoting growth and function of intestinal epithelial cells under luminal ATP and UDP surge in the gut.

Th17 Cell and Inflammatory Infiltrate Interactions in Cutaneous Leishmaniasis: Unraveling Immunopathogenic Mechanisms

  • Abraham U. Morales-Primo;Ingeborg Becker;Claudia Patricia Pedraza-Zamora;Jaime Zamora-Chimal
    • IMMUNE NETWORK
    • /
    • v.24 no.2
    • /
    • pp.14.1-14.26
    • /
    • 2024
  • The inflammatory response during cutaneous leishmaniasis (CL) involves immune and non-immune cell cooperation to contain and eliminate Leishmania parasites. The orchestration of these responses is coordinated primarily by CD4+ T cells; however, the disease outcome depends on the Th cell predominant phenotype. Although Th1 and Th2 phenotypes are the most addressed as steers for the resolution or perpetuation of the disease, Th17 cell activities, especially IL-17 release, are recognized to be vital during CL development. Th17 cells perform vital functions during both acute and chronic phases of CL. Overall, Th17 cells induce the migration of phagocytes (neutrophils, macrophages) to the infection site and CD8+ T cells and NK cell activation. They also provoke granzyme and perforin secretion from CD8+ T cells, macrophage differentiation towards an M2 phenotype, and expansion of B and Treg cells. Likewise, immune cells from the inflammatory infiltrate have modulatory activities over Th17 cells involving their differentiation from naive CD4+ T cells and further expansion by generating a microenvironment rich in optimal cytokines such as IL-1β, TGF-β, IL-6, and IL-21. Th17 cell activities and synergies are crucial for the resistance of the infection during the early and acute stages; however, if unchecked, Th17 cells might lead to a chronic stage. This review discusses the synergies between Th17 cells and the inflammatory infiltrate and how these interactions might destine the course of CL.

Flower MeOH Extract of Panax Notoginseng Attenuates the Production of Nitric Oxide and Pro-inflammatory Cytokines in LPS-stimulated RA W264.7 Cells (삼칠화(三七花)의 대식세포로부터 LPS에 의해 유도되는 nitric oxide와 전염중성 사이토카인의 생성 억제효과)

  • Joo, Ye-Jin;Jung, Hye-Mi;Seo, Un-Kyo
    • The Journal of Korean Medicine
    • /
    • v.30 no.1
    • /
    • pp.150-162
    • /
    • 2009
  • Objectives: Inflammatory mediators, such as nitric oxide (NO), prostaglandin E2 ($PGE_2$) and pro-inflammatory cytokines, TNF-${\alpha}$ and IL-$1{\beta}$ playa critical role in inflammatory immune response. Therefore, intervention of inflammatory mediator production promises therapeutic benefit for treatment of many chronic inflammatory diseases, such as allergic asthma, rheumatoid arthritis, multiple sclerosis, septic shock and neurodegenerative diseases. In this study, the pharmacological effects of the flower MeOH extract Panax notoginseng (Notoginseng Flos; NF) on inflammation were investigated to address potential therapeutic or toxic effects. Methods: RA W264.7 cells were treated with different concentrations of NF methanol (NF-M) extract in the presence or absence of LPS ($1{\mu}g/m{\ell}$). Results: NF-M extract significantly inhibited LPS-induced production of NO, $PGE_2$ and pro-inflammatory cytokines, TNF-${\alpha}$ and IL-$1{\beta}$ in a dose-dependent manner. In addition, NF-M extract suppressed mRNA expressions and protein levels of iNOS, COX-2 and pro-inflammatory cytokines in LPS-stimulated RA W264.7 cells. Conclusion: These results indicated that NF-M extract inhibits LPS-induced production of inflammatory mediators in macrophages and demonstrated that NF-M extract possesses anti-inflammatory properties in vitro.

  • PDF

BIRB 796 has Distinctive Anti-inflammatory Effects on Different Cell Types

  • Ryoo, Soyoon;Choi, Jida;Kim, Jaemyung;Bae, Suyoung;Hong, Jaewoo;Jo, Seunghyun;Kim, Soohyun;Lee, Youngmin
    • IMMUNE NETWORK
    • /
    • v.13 no.6
    • /
    • pp.283-288
    • /
    • 2013
  • The pro-inflammatory cytokines tumor necrosis factor-${\alpha}$ (TNF${\alpha}$) and interleukin (IL)-$1{\beta}$ are crucial mediators involved in chronic inflammatory diseases. Inflammatory signal pathways regulate inflammatory cytokine expression-mediated by p38 mitogen activated protein kinase (p38MAPK). Therefore, considerable attention has been given to p38MAPK as a target molecule for the development of a novel anti-inflammatory therapeutics. BIRB 796, one of p38MAPK inhibitor, is a candidate of therapeutic drug for chronic inflammatory diseases. In this study, we investigated the effect of BIRB 796 on inflammatory cytokine productions by lipopolysaccharide (LPS) in different immune cell types. BIRB 796 reduced LPS-mediated IL-8 production in THP-1 cells but not in Raw 264.7 cells. Further analysis of signal molecules by western blot revealed that BIRB 796 sufficiently suppressed LPS-mediated phosphorylation of p38MAPK in both cell types whereas it failed to block inhibitor of kappa B (I-${\kappa}B$) degradation in Raw 264.7 cells. Taken together, these results suggest that the anti-inflammatory function of BIRB 796 depends on cell types.

Effect of long-chain inorganic polyphosphate treated with wheat phytase on interleukin 8 signaling in HT-29 cells

  • An, Jeongmin;Cho, Jaiesoon
    • Animal Bioscience
    • /
    • v.35 no.6
    • /
    • pp.892-901
    • /
    • 2022
  • Objective: This study was performed to investigate the potential effect of wheat phytase on long-chain inorganic polyphosphate (polyP)-mediated interleukin 8 (IL-8) signaling in an intestinal epithelial cell line, HT-29 cells. Methods: Cell viability and the release of the pro-inflammatory cytokine IL-8 in HT-29 cells exposed to polyP1150 (average of 1,150 phosphate residues) treated with or without wheat phytase were measured by the EZ-CYTOX kit and the IL-8 ELISA kit, respectively. Also, the activation of cellular inflammatory factors NF-κB and MAPK (p38 and ERK 1/2) in HT-29 cells was investigated using ELISA kits. Results: PolyP1150 negatively affected the viability of HT-29 cells in a dose-dependent manner. However, 100 mM polyP1150 dephosphorylated by wheat phytase increased cell viability by 1.4-fold over that of the intact substrate. Moreover, the 24 h exposure of cells to enzyme-treated 50 mM polyP1150 reduced the secretion of IL-8 and the activation of NF-κB by 9% and 19%, respectively, compared to the intact substrate. PolyP1150 (25 and 50 mM) dephosphorylated by the enzyme induced the activation of p38 MAPK via phosphorylation to 2.3 and 1.4-fold, respectively, compared to intact substrate, even though it had little effect on the expression of ERK 1/2 via phosphorylation. Conclusion: Wheat phytase could attenuate polyP1150-induced IL-8 release in HT-29 cells through NF-κB, independent of MAP kinases p38 and ERK. Thus, wheat phytase may alleviate inflammatory responses including hypercytokinemia caused by bacterial polyP infection in animals. Therefore, wheat phytase has the potential as an anti-inflammatory therapeutic supplement in animal husbandry.