• Title/Summary/Keyword: Inflammatory cells

Search Result 4,910, Processing Time 0.042 seconds

Korean Red Ginseng attenuates Di-(2-ethylhexyl) phthalate-induced inflammatory response in endometrial cancer cells and an endometriosis mouse model

  • Song, Heewon;Won, Ji Eun;Lee, Jeonggeun;Han, Hee Dong;Lee, YoungJoo
    • Journal of Ginseng Research
    • /
    • v.46 no.4
    • /
    • pp.592-600
    • /
    • 2022
  • Background: Di-(2-ethylhexyl) phthalate (DEHP) is the most common endocrine disrupting chemical used as a plasticizer. DEHP is associated with the development of endometrium-related diseases through the induction of inflammation. The major therapeutic approaches against endometrial cancer and endometriosis involve the suppression of inflammatory response. Korean Red Ginseng (KRG) is a natural product with anti-inflammatory and anti-carcinogenic properties. Thus, the purpose of this study is to investigate the effects of KRG on DEHP-induced inflammatory response in endometrial cancer Ishikawa cells and a mouse model of endometriosis. Methods: RNA-sequencing was performed and analyzed on DEHP-treated Ishikawa cells in the presence and absence of KRG. The effects of KRG on DEHP-induced cyclooxygenase-2 (COX-2) mRNA levels in Ishikawa cells were determined by RT-qPCR. Furthermore, the effects of KRG on the extracellular signal-regulated kinases (ERKs) pathway, COX-2, and nuclear factor-kappa B (NF-kB) p65 after DEHP treatment of Ishikawa cells were evaluated by western blotting. In the mouse model, the severity of endometriosis induced by DEHP and changes in immunohistochemistry were used to assess the protective effect of KRG. Results: According to the RNA-sequencing data, DEHP-induced inflammatory response-related gene expression was downregulated by KRG. Moreover, KRG significantly inhibited DEHP-induced ERK1/2/NF-κB/COX-2 levels in Ishikawa cells. In the mouse model, KRG administration significantly inhibited ectopic endometriosis growth after DEHP-induced endometriosis. Conclusions: Overall, these results suggest that KRG may be a promising lead for the treatment of endometrial cancer and endometriosis via suppression of the inflammatory response.

Inflammatory Responses in a Benign Prostatic Hyperplasia Epithelial Cell Line (BPH-1) Infected with Trichomonas vaginalis

  • Kim, Sang-Su;Kim, Jung-Hyun;Han, Ik-Hwan;Ahn, Myoung-Hee;Ryu, Jae-Sook
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.2
    • /
    • pp.123-132
    • /
    • 2016
  • Trichomonas vaginalis causes the most prevalent sexually transmitted infection worldwide. Trichomonads have been detected in prostatic tissues from prostatitis, benign prostatic hyperplasia (BPH), and prostate cancer. Chronic prostatic inflammation is known as a risk factor for prostate enlargement, benign prostatic hyperplasia symptoms, and acute urinary retention. Our aim was to investigate whether T. vaginalis could induce inflammatory responses in cells of a benign prostatic hyperplasia epithelial cell line (BPH-1). When BPH-1 cells were infected with T. vaginalis, the protein and mRNA of inflammatory cytokines, such as CXCL8, CCL2, IL-$1{\beta}$, and IL-6, were increased. The activities of TLR4, ROS, MAPK, JAK2/STAT3, and NF-${\kappa}B$ were also increased, whereas inhibitors of ROS, MAPK, PI3K, NF-${\kappa}B$, and anti-TLR4 antibody decreased the production of the 4 cytokines although the extent of inhibition differed. However, a JAK2 inhibitor inhibited only IL-6 production. Culture supernatants of the BPH-1 cells that had been incubated with live T. vaginalis (trichomonad-conditioned medium, TCM) contained the 4 cytokines and induced the migration of human monocytes (THP-1 cells) and mast cells (HMC-1 cells). TCM conditioned by BPH-1 cells pretreated with NF-${\kappa}B$ inhibitor showed decreased levels of cytokines and induced less migration. Therefore, it is suggested that these cytokines are involved in migration of inflammatory cells. These results suggest that T. vaginalis infection of BPH patients may cause inflammation, which may induce lower urinary tract symptoms (LUTS).

Anti-inflammatory Effects of Cheongnoimyungshin-hwan in Microglia Cells (미세아교세포의 염증반응에 미치는 청뇌명신환의 영향)

  • Im, Yong-Gyun;Choi, Yung-Hyun;Hwang, Won-Deok
    • Journal of Oriental Neuropsychiatry
    • /
    • v.25 no.4
    • /
    • pp.423-434
    • /
    • 2014
  • Objectives: Activated microglia cells play an important role in inflammatory responses in the central nervous system (CNS) which are involved in neurodegenerative diseases. We attempted to determine the anti-inflammatory effects of Cheongnoimyungshin-hwan (CNMSH) in microglia cells. Methods: We examined the effect of CNMSH on the inflammatory responses in BV2 microglia cells induced by lipopolysaccharide (LPS) and explored the mechanism underlying the action of CNMSH. Results: BV2 cells treated with LPS showed an up-regulation of nitric oxide (NO), prostaglandin $PGE_2(PGE_2)$ and interleukin $1{\beta}(IL-1{\beta})$ release, whereas CNMSH suppressed this up-regulation. CNMSH inhibited the induction of COX-2, iNOS and $IL-1{\beta}$ proteins in LPS-treated BV2 cells and blocked the LPS-induced phosphorylation and nuclear translocation of nuclear factor ${\kappa}B(NF-{\kappa}B$). Furthermore, CNMSH attenuated the LPS-induced phosphorylation of extracellular signal-regulated kinase and p38 mitogen activated protein kinase (MAPK), as well as the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway, but did not inhibit the LPS-induced phosphorylation of c-Jun amino terminal kinase. Conclusions: These results suggest that the inhibitory effect of CNMSH on the LPS-induced production of inflammatory mediators and cytokines in BV2 cells is associated with the suppression of the $NF-{\kappa}B$ and PI3KAkt signaling pathways.

Effect of Water Extract of Sparasis crispa on the Expression of TNF-α, iNOS and IL-1β Genes in RAW 264.7 Cells (꽃송이버섯 추출물이 RAW 264.7 세포에서 TNF-α, iNOS, IL-1β 유전자 발현에 미치는 영향)

  • Han, Hyo-Sang
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.9 no.1
    • /
    • pp.163-171
    • /
    • 2021
  • Purpose : The purpose of this study was to examine the anti-inflammatory effects of Sparassis crispa (SC). SC is a well-known traditional herbal remedy and its mushroom is used for treatment of inflammation. Many diseases that are increasing recently have characteristics of inflammatory diseases. Researchers are finding bioactive substances from natural products that can promote treatment and prevention of inflammation. We investigated the effect of water extracted from SC on the expression of effector genes involved in the function of RAW 264.7 cells. Methods : Effects of RAW 264.7 cells on cell viability, antioxidation, and mRNA expression were examined using water extracts from SC. A 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay was performed to determine the effect of water extracts from SC on cell viability in RAW 264.7 cells. Inflammation of RAW 264.7 cells induced by lipopolysaccharide (LPS) treatment and expression levels of inflammatory cytokine TNF-α, iNOS and IL-1β gene were analyzed using quantitative reverse transcription PCR (qRT-PCR) analysis. Results : The MTS assay was performed on RAW 264.7 cells after treatment with various concentrations of water extracts of SC. Treatment of RAW 264.7 cells with water extracts from SC and LPS at a concentration of 0.125, 0.5 mg/㎖ for twenty four hours promoted mRNA expression of TNF-α, iNOS and IL-1β. Conclusion : MTS assay was applied to RAW 264.7 cells after various concentrations of water extracts of SC. Through experimental demonstration of anti-oxidant and anti-inflammatory effects of water extracts from SC, we suggest that SC is a valuable material for the prevention and treatment of various inflammatory diseases.

The Anti-Inflammatory and Anti-Oxidant Activity of Ethanol Extract from Red Rose Petals

  • Kim, Hyun-Kyoung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.139-148
    • /
    • 2020
  • Red rose petals are usually disposed but they are an abundant source of phenolics and traditionally used as food supplement and as herbal medicine. Of the Various phenolics, they are known to have anticancer, antioxidant, and anti-inflammatory properties. In this study, we investigated the anti-inflammatory effects of red rose ethanolic extracts (GRP) on lipopolysaccharide (LPS)-activated RAW 264.7 cells. The results demonstrated that pretreatment of GRP (500㎍/mL) significantly reduced NO production by suppressing iNOS protein expression in LPS-stimulated cells. Anti-inflammatory effects by red rose petals were observed in the following. Red rose petals inhibited the translocation of NF-κB from the cytosol to the nucleus via the suppression of IκB-α phosphorylation and also inhibited LPS-stimulated NF-κB transcriptional activity. These findings suggest that red rose petals exert anti-inflammatory actions and help to elucidate the mechanisms underlying the potential therapeutic values of red rose petals. Therefore, red rose petals could be regarded as a potential source of natural anti-inflammatory agents.

Phosphorylation of Akt Mediates Anti-Inflammatory Activity of 1-p-Coumaroyl ${\beta}$-D-Glucoside Against Lipopolysaccharide-Induced Inflammation in RAW264.7 Cells

  • Vo, Van Anh;Lee, Jae-Won;Kim, Ji-Young;Park, Jun-Ho;Lee, Hee Jae;Kim, Sung-Soo;Kwon, Yong-Soo;Chun, Wanjoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.1
    • /
    • pp.79-86
    • /
    • 2014
  • Hydroxycinnamic acids have been reported to possess numerous pharmacological activities such as antioxidant, anti-inflammatory, and anti-tumor properties. However, the biological activity of 1-p-coumaroyl ${\beta}$-D-glucoside (CG), a glucose ester derivative of p-coumaric acid, has not been clearly examined. The objective of this study is to elucidate the anti-inflammatory action of CG in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. In the present study, CG significantly suppressed LPS-induced excessive production of pro-inflammatory mediators such as nitric oxide (NO) and $PGE_2$ and the protein expression of iNOS and COX-2. CG also inhibited LPS-induced secretion of pro-inflammatory cytokines, IL-$1{\beta}$ and TNF-${\alpha}$. In addition, CG significantly suppressed LPS-induced degradation of $I{\kappa}B$. To elucidate the underlying mechanism by which CG exerts its anti-inflammatory action, involvement of various signaling pathways were examined. CG exhibited significantly increased Akt phosphorylation in a concentration-dependent manner, although MAPKs such as Erk, JNK, and p38 appeared not to be involved. Furthermore, inhibition of Akt/PI3K signaling pathway with wortmannin significantly, albeit not completely, abolished CG-induced Akt phosphorylation and anti-inflammatory actions. Taken together, the present study demonstrates that Akt signaling pathway might play a major role in CG-mediated anti-inflammatory activity in LPS-stimulated RAW264.7 macrophage cells.

3,4,5-Trihydroxycinnamic Acid Inhibits Lipopolysaccharide-Induced Inflammatory Response through the Activation of Nrf2 Pathway in BV2 Microglial Cells

  • Lee, Jae-Won;Choi, Yong-Jun;Park, Jun-Ho;Sim, Jae-Young;Kwon, Yong-Soo;Lee, Hee Jae;Kim, Sung-Soo;Chun, Wanjoo
    • Biomolecules & Therapeutics
    • /
    • v.21 no.1
    • /
    • pp.60-65
    • /
    • 2013
  • 3,4,5-Trihydroxycinnamic acid (THC) is a derivative of hydroxycinnamic acids, which have been reported to possess a variety of biological properties such as anti-inflammatory, anti-tumor, and neuroprotective activities. However, biological activity of THC has not been extensively examined. Recently, we reported that THC possesses anti-inflammatory activity in LPS-stimulated BV2 microglial cells. However, its precise mechanism by which THC exerts anti-inflammatory action has not been clearly identified. Therefore, the present study was carried out to understand the anti-inflammatory mechanism of THC in BV2 microglial cells. THC effectively suppressed the LPS-induced induction of pro-inflammatory mediators such as NO, TNF-${\alpha}$, and IL-$1{\beta}$. THC also suppressed expression of MCP-1, which plays a key role in the migration of activated microglia. To understand the underlying mechanism by which THC exerts these anti-inflammatory properties, involvement of Nrf2, which is a cytoprotective transcription factor, was examined. THC resulted in increased phosphorylation of Nrf2 with consequent expression of HO-1 in a concentration-dependent manner. THC-induced phosphorylation of Nrf2 was blocked with SB203580, a p38 MAPK inhibitor, indicating that p38 MAPK is the responsible kinase for the phosphorylation of Nrf2. Taken together, the present study for the first time demonstrates that THC exerts anti-inflammatory properties through the activation of Nrf2 in BV2 microglial cells, suggesting that THC might be a valuable therapeutic adjuvant for the treatment of inflammation-related disorders in the CNS.

Comparative Study of the Anti-inflammatory Effects of Menthae Herba from Korea and China (한국산과 중국산 박하의 항염증 효과에 관한 비교연구)

  • Lim, Hye-Sun;Kim, Jung-Hoon;Ha, Hye-Kyung;Seo, Chang-Seob;Shin, Hyeun-Kyoo
    • Korean Journal of Pharmacognosy
    • /
    • v.43 no.3
    • /
    • pp.231-238
    • /
    • 2012
  • Menthae herba (MH) extracts exhibit anti-inflammatory effects. The purpose of this study was to determine whether the anti-inflammatory effects of MH extracts vary according to the cultivation regions. We performed a comparative analysis of MH extracts by evaluating the production of inflammatory mediators in RAW 264.7 murine macrophage cells and HaCaT human keratinocyte cells. MH extracts obtained from different cultivation regions in Korea and China significantly reduced the production of nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) in RAW 264.7 cells stimulated with lipopolysaccharide (LPS). No differences in these inhibitory activities were observed between MH extracts. In HaCaT cells stimulated with TNF-${\alpha}$ and interferon-${\gamma}$ (IFN-${\gamma}$), MH extracts did not inhibit the production of macrophage-derived chemokine (MDC/CCL22), but most extracts reduced the production of the regulated on activation normal T-cell expression and secreted (RANTES/CCL5). We used clustering tree analysis of the MH extracts according to the chromatographic pattern and anti-inflammatory potency of MH extracts. We observed differences in the chromatographic pattern of MH extracts but no difference in anti-inflammatory potency. Our findings suggest that MH extracts from different regions do not show any differences in their pharmacological potency in that MH extracts are used as therapeutic agents to treat inflammatory disorders.

Anti-inflammatory Effects of Chitosan-phytochemical Conjugates against Propionibacterium acnes-induced Inflammation (Propionibacterium acnes에 의해 유도된 염증에 대한 Chitosan-phytochemical Conjugates의 항염증 효과)

  • Kim, Ji-Hoon;Je, Jae-Young;Kim, Young-Mog
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.5
    • /
    • pp.589-593
    • /
    • 2016
  • Propionibacterium acnes infection in skin tissue often causes acne vulgaris, commonly characterized by inflammatory papules, pustules, and nodules. Chitosan and its derivatives possess strong anti-inflammatory effects. In this study, the anti-inflammatory activity of chitosan-phytochemical conjugates on P. acnes-infected human skin keratinocytes (HaCaT) was evaluated. We designed a model of P. acnes-induced inflammation in viable HaCaT cells. Nitric oxide (NO), an inflammatory marker, was successfully elevated by P. acnes infection in HaCaT cells in a dose-dependent manner. Furthermore, the levels of NO were reduced by treatment with chitosan-phytochemical conjugates (chitosan-caffeic acid, -ferulic acid and -sinapic acid) in a dose-dependent manner. Among these conjugates, chitosan-caffeic acid exhibited the strongest NO suppression in HaCaT cells infected with P. acnes. The results obtained in this study suggest that chitosan-phytochemical conjugates could be used as a potential therapeutic agent against acne vulgaris.

Anti-inflammatory Effect of Mugi-hwan Water Extract in RAW 264.7 Cells (무기환(戊己丸)의 RAW 264.7 세포에 대한 항염증작용 연구)

  • Kim, Ilhyun;Choi, Chonghwan;Lee, Sewon;Song, Yungsun
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.23 no.3
    • /
    • pp.27-35
    • /
    • 2013
  • Objectives The aim of this study was to investigate anti-inflammatory activity of Mugi-hwan (MGH) Water Extract. Methods Cells were treated with 2 ug/ml of LPS 1 hour prior to the addition of MGH. Cell viability was measured by MTS assay. The production of NO was determined by reacting cultured medium with Griess reagent. The expression of COX-2, iNOS and MAPKs was investigated by Western blot, RT-PCR. The content of level of cytokines ($PGE_2$, IL-6, in media from LPS-stimulated Raw 264.7 cells was analyed by ELISA kit. Results MGH inhibited the production of NO, $PGE_2$, IL-6 as well as the expressions of iNOS, COX-2 in the murine macrophage, RAW 264.7 cells. MGH also had suppression effects of LPS induced MAPKs activation. Conclusions These results suggest that MGH has an anti-inflammatory therapeutic potential, which may result from inhibition of MAPK phosphorylation, thereby decreasing the expression of pro-inflammatory genes.