• Title/Summary/Keyword: Inflammatory Cytokine

Search Result 1,587, Processing Time 0.025 seconds

BIRB 796 has Distinctive Anti-inflammatory Effects on Different Cell Types

  • Ryoo, Soyoon;Choi, Jida;Kim, Jaemyung;Bae, Suyoung;Hong, Jaewoo;Jo, Seunghyun;Kim, Soohyun;Lee, Youngmin
    • IMMUNE NETWORK
    • /
    • v.13 no.6
    • /
    • pp.283-288
    • /
    • 2013
  • The pro-inflammatory cytokines tumor necrosis factor-${\alpha}$ (TNF${\alpha}$) and interleukin (IL)-$1{\beta}$ are crucial mediators involved in chronic inflammatory diseases. Inflammatory signal pathways regulate inflammatory cytokine expression-mediated by p38 mitogen activated protein kinase (p38MAPK). Therefore, considerable attention has been given to p38MAPK as a target molecule for the development of a novel anti-inflammatory therapeutics. BIRB 796, one of p38MAPK inhibitor, is a candidate of therapeutic drug for chronic inflammatory diseases. In this study, we investigated the effect of BIRB 796 on inflammatory cytokine productions by lipopolysaccharide (LPS) in different immune cell types. BIRB 796 reduced LPS-mediated IL-8 production in THP-1 cells but not in Raw 264.7 cells. Further analysis of signal molecules by western blot revealed that BIRB 796 sufficiently suppressed LPS-mediated phosphorylation of p38MAPK in both cell types whereas it failed to block inhibitor of kappa B (I-${\kappa}B$) degradation in Raw 264.7 cells. Taken together, these results suggest that the anti-inflammatory function of BIRB 796 depends on cell types.

Inflammatory Bowel Disease and Cytokine (염증성 장질환과 사이토카인)

  • Choi, Eun Young;Cho, Kwang Keun;Choi, In Soon
    • Journal of Life Science
    • /
    • v.23 no.3
    • /
    • pp.448-461
    • /
    • 2013
  • Inflammatory bowel disease, known as Crohn's disease and ulcerative colitis, is an unexplained disease characterized by chronic inflammation that repeats a cycle of relapse, improvement, and complications. The cause of inflammatory bowel disease is not clearly known, but it is predicted that a complex of various factors precipitate its occurrence. In particular, inflammatory mediators, such as cytokine, induce an increase in cell-mediated inflammatory responses. Focal tissue damage then occurs in the intestinal mucosa because of the weakening of the immune-modulating functions of cotton. Immune and inflammatory responses do not decrease appropriately but continue until they lead to chronic inflammation. Current research has focused on the cytokine genes, which have important roles in these inflammatory responses. Cytokine is a glycoprotein that is produced mostly in activated immune cells. It connects the activation, multiplication, and differentiation between immune cells, which causes focal tissue damage and inflammatory response. Moreover, butyrate, which originates in dietary fiber and plays an important role in the structure and function of the intestinal area, shows control functions in the intestinal immune system by decreasing the proinflammatory cytokine and increasing the anti-inflammatory cytokine. Therefore, this research investigated the molecular mechanism of the anti-inflammatory effects of butyrate to comprehend the cytokine controlling abilities of butyrate in the immune cells. Butyrate is expected to have potential in new treatment strategies for inflammatory bowel disease.

The Effects of Prunella vulgaris on the Cyto-pathological Alterations and Expression of Inflammatory Cytokines in Non-Bacterial Prostatitis Rat Model (하고초(夏枯草)가 만성 비세균성 전립선염 Rat의 전립선세포 조직변화 및 염증관련 Cytokines 발현에 미치는 영향)

  • Han, Yang-Hee
    • The Journal of Korean Medicine
    • /
    • v.29 no.2
    • /
    • pp.71-80
    • /
    • 2008
  • Objective: There is increasing evidence that chronic non-bacterial prostatitis is recognized to be a local inflammatory disease, and there is substantiating evidence to support the role of the inflammatory responses in its pathogenesis, and clinical value in the evaluation of therapeutic efficacy. Prunella vulgaris has been traditionally used in treatment of inflammatory diseases, including of scrofula, goiter, and allergy diseases. In this study, we investigated the effects of Prunella vulgaris on inflammatory cytokines and cytopathological alternation in the rat model of non-bacterial prostatitis induced by castration and $17{\beta}-estradiol$ treatment. Methods: Two-month-old rats were treated with $17{\beta}-estradiol$ after castration for induction of experimental non-bacterial prostatitis, which is similar to human chronic prostatitis in histopathological profiles. Prunella vulgaris as an experimental specimen, and testosterone as a positive control, were administered orally. The prostates were evaluated by histopathological parameters including the epithelial score and epithelial-stromal ratio for glandular damage, and the expression of inflammatory cytokine genes including the interleukin $(IL)-1{\beta}$, IL-5, IL-12, and tumor necrosis factor $(TNF)-{\alpha}$. Results: While prostates of control rats revealed severe acinar gland atrophy and stromal proliferation, the rats treated with Prunella vulgaris showed a diminished range of tissue damage. Epithelial score was improved in Prunella vulgaris over that of the control (P<0.05). The epithelial-stromal ratio was lower with Prunella vulgaris when compared to that of the control (P<0.05). In the reverse transcription-polymerase chain reaction (RT-PCR) of inflammatory cytokine genes, Prunella vulgaris inhibited the expression of $IL-1{\beta}$ and $TNF-{\alpha}$ genes, while it modulated the expression of IL-5, which is an anti-inflammatory cytokine. Conclusions: These findings suggest that Prunella vulgaris may protect the glandular epithelial cells and also inhibit stromal proliferation in association with the immune modulation including the suppression of inflammatory cytokines and promotion of anti-inflammatory cytokine. From theses results, we suggest that Prunella vulgaris could be a useful remedy agent for treating chronic non-bacterial prostatitis.

  • PDF

Role of Gallic Acid in Inflammatory Allergic Process

  • Choi, Cheol-Hee;Kim, Sang-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.2
    • /
    • pp.101-108
    • /
    • 2006
  • The aim of the present study was to elucidate whether gallic acid could modulate the inflammatory allergic reaction and to study its mechanism of action Gallic acid inhibited compound 48/80- or immunoglobulin E (IgE)-induced histamine release from mast cells. The inhibitory effect of gallic acid on the histamine release was mediated by modulation of cAMP and intracellular calcium. Gallic acid decreased the phorbol 12-myristate 13-acetate plus calcium ionophore A23187-stimulated pro-inflammatory cytokine gene expression and production such as TNF- ${\alpha}$ and IL-6 in human mast cells, and the inhibitory effect of gallic acid was on dependent nuclear factor- ${\kappa}$B and p38 mitogen-activated protein kinase. Our findings provide evidence that gallic acid inhibits mast cell-derived inflammatory allergic reaction by blocking histamine release and pro-inflammatory cytokine expression.

Anti-Inflammatory Effects of Water Chestnut Extract on Cytokine Responses via Nuclear Factor-κB-signaling Pathway

  • Kim, Bora;Kim, Jin Eun;Choi, Byung-Kook;Kim, Hyun-Soo
    • Biomolecules & Therapeutics
    • /
    • v.23 no.1
    • /
    • pp.90-97
    • /
    • 2015
  • Water chestnut (Trapa japonica Flerov.) is an annual aquatic plant. In the present study, we showed that the treatment of water chestnut extracted with boiling water resulted in a significant increase 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity and decrease the intracellular $H_2O_2$-induced accumulation of reactive oxygen species. In addition, water chestnut extract (WCE) inhibited lipopolysaccharide (LPS)-induced nitric oxide production and suppressed mRNA and protein expression of the inducible nitric oxide synthase gene. The cytokine array results showed that WCE inhibited inflammatory cytokine secretion. Also, WCE reduced tumor necrosis factor-${\alpha}$- and interleukin-6-induced nuclear factor-${\kappa}B$ activity. Furthermore, during sodium lauryl sulfate (SLS)-induced irritation of human skin, WCE reduced SLS-induced skin erythema and improved barrier regeneration. These results indicate that WCE may be a promising topical anti-inflammatory agent.

Stress, Inflammation and Neurogenesis in Major Depression (주요우울증에서 스트레스, 염증반응, 신경조직발생)

  • Kim, Yong-Ku
    • Korean Journal of Biological Psychiatry
    • /
    • v.18 no.4
    • /
    • pp.169-175
    • /
    • 2011
  • Stress, a risk factor of major depression induces cytokine mediated inflammation and decreased neurogenesis. In patients with major depression, significant increases of pro-inflammatory cytokines have been consistently reported. The pro-inflammatory cytokines can stimulate the hypothalamic-pituitary-adrenal (HPA) axis to release glucocorticoids. In the brain, microglia and play a role of immune activation in response to stress. Increased pro-inflammatory cytokine play a role in restricting neurogenesis in the brain. Although neurogenesis may not be essential for the development of depression, it may be required for clinically effective antidepressant treatment. Hence, stimulation of neurogenesis is regarded as a promising strategy for new antidepressant targets. This review introduces changes in neurotransmitter, cytokine and neurogenesis in major depression and explores the possible relationship between pro-inflammatory cytokines and neurogenesis related to stress in major depression.

Interleukin-32 in Inflammatory Autoimmune Diseases

  • Kim, Soohyun
    • IMMUNE NETWORK
    • /
    • v.14 no.3
    • /
    • pp.123-127
    • /
    • 2014
  • Interleukin-32 (IL-32) is a cytokine inducing crucial inflammatory cytokines such as tumor necrosis factor-${\alpha}(TNF{\alpha})$ and IL-6 and its expression is elevated in various inflammatory autoimmune diseases, certain cancers, as well as viral infections. IL-32 gene was first cloned from activated T cells, however IL-32 expression was also found in other immune cells and non-immune cells. IL-32 gene was identified in most mammals except rodents. It is transcribed as multiple-spliced variants in the absence of a specific activity of each isoform. IL-32 has been studied mostly in clinical fields such as infection, autoimmune, cancer, vascular disease, and pulmonary diseases. It is difficult to investigate the precise role of IL-32 in vivo due to the absence of IL-32 gene in mouse. The lack of mouse IL-32 gene restricts in vivo studies and restrains further development of IL-32 research in clinical applications although IL-32 new cytokine getting a spotlight as an immune regulatory molecule processing important roles in autoimmune, infection, and cancer. In this review, we discuss the regulation and function of IL-32 in inflammatory bowel diseases and rheumatoid arthritis.

Cytokines and Depression (사이토카인과 우울증)

  • Kim, Yong-Ku
    • Korean Journal of Biological Psychiatry
    • /
    • v.15 no.3
    • /
    • pp.175-185
    • /
    • 2008
  • Accumulating evidence has suggested the existence of reciprocal communication between immune, endocrine, and neurotransmitter system. Cytokine hypothesis of depression implies that increased pro-inflammatory cytokine such as -1, IL-6, IL-12, TNF-${\alpha}$, and IFN-${\gamma}$ in major depression, acting neuromodulators, play a key role in the mediation of behavioral, neuroendocrine, and neurochemical disturbances in depression. Concerning the relation between cytokines and serotonin metabolism, pro-inflammatory cytokines have profound effects on the metabolism of brain serotonin through the enzyme indoleamine-2,3-dioxygenase(IDO) that metabolizes tryptophan, the precursor of 5-HT to neurodegenerative quinolinate and neuroprotective kynurenate. The neurodegeneration process is reinforced by the neurotoxic effect of the hypercortisolemia during depression. From this perspective, it is possible that efficacy of antidepressants in the treatment of depression may, at least in part, rely on downregulation of pro-inflammatory cytokine synthesis. So, the use of cytokine synthesis inhibitors or cytokine antagonists may be a new treatment approach in depression. However, at present the question whether cytokines play a causal role in the onset of depression or are mere epiphenomena sustaining depressive symptoms remains to be elucidated. Nevertheless, cytokine hypothesis has created new perspectives in the study of psychological and pathophysiological mechanism that are associated with major depression, as well as the prospect for developing a new generation antidepressants.

  • PDF

Oral Exposure to Mercury Alters T Lymphocyte Phenotypes and Augments LPS-induced Cytokine Expressions in Spleen and Thymus (비장과 흉선의 림프세포와 LPS에 의해 유도된 사이토카인의 발현에 대한 수은의 영향)

  • 김상현;최철희;임종필;신태용
    • YAKHAK HOEJI
    • /
    • v.48 no.4
    • /
    • pp.241-246
    • /
    • 2004
  • Mercury is a widespread metal and consequently there are large populations that currently exposed to low levels of mercury. Endotoxin is a component of the gram-negative bacteria and promotes inflammatory responses. The present study was designed to determine the impact of mercury on lymphocytes phenotype populations and endotoxin-induced inflammatory cytokine expressions in immune organ, spleen and thymus. Male BALB/c mice were exposed continuously to 0, 0.3, 1.5, 7.5, or 37.5 ppm of mercuric chloride in drinking water for 14 days and at the end of the treatment period, lipopolysaccharide (LPS, 0.5 mg/kg) was injected intraperitoneally 2 h prior to euthanasia. The dose-range of mercury used did not cause hepatotoxicity. Mercury at 7.5 and 37.5 ppm dose-dependently decreased CD3$^{+}$ T lymphocytes in spleen; both CD4$^{+}$ and CD8$^{+}$ single positive lymphocyte populations were decreased. Exposure to 7.5 and 37.5 ppm of mercury decreased the CD8$^{+}$ T lymphocyte population in the thymus, whereas double positive CD4$^{+}$ / CD8$^{+}$ and CD4$^{+}$ thymocytes were not altered. Mercury altered LPS-induced inflammatory cytokine gene expressions such as, tumor necrosis factor $\alpha$, interferon ${\gamma}$, and interleukin-12 in spleen and thymus. Results indicated that decreases in T lymphocyte populations in immune organs and altered cytokine gene expression may contribute to the immune-modulative effects of inorganic mercury.ganic mercury.

Antioxidant Activity and Anti-inflammatory Effects of Salix Koreensis Andersson Branches Extracts (버드나무(Salix Koreensis Andersson) 가지 추출물의 항산화 및 항염증 효과)

  • Kim, Mi-Hye
    • Journal of the Korean Society of Food Culture
    • /
    • v.33 no.2
    • /
    • pp.104-111
    • /
    • 2018
  • This study aims to compare and analyze a willow tree (Salix Koreensis andersson) extract's antioxidant and anti-inflammatory activity by investigating its: total polyphenol, flavonoid content, SOD-like activity, DPPH vitality. the willow tree was induced with LPS to determine its active anti-inflammatory effects. as a result, the willow methanol extract showed a higher total polyphenol and flavonoid content than those of willow distilled water extract, but the willow distilled water extract showed a higher SOD than that of willow methanol extract. in its DPPH scavenging ability, the willow methanol extract's antioxidant activity was higher than that of the willow distilled water extract. the willow extract's measurements such as the production of NO, inflammatory cytokine ($TNF-{\alpha}$, IL-6 measurement) were significantly reduced as its concentration level went down. according to the research outcomes, when induced, he will extract's macrophage produces mediator-like substances such as NO and inflammatory cytokine that can be used to alleviate the inflammatory response. therefore, the willow tree proved to be a useful raw plant material for the products designed to combat inflammatory activities due to its natural antioxidant and anti-inflammatory response substances such as NO and cytokine.