• Title/Summary/Keyword: Infinite Failure Mean Value Function

Search Result 8, Processing Time 0.022 seconds

A Comparative Study of Software Reliability Model Considering Log Type Mean Value Function (로그형 평균값함수를 고려한 소프트웨어 신뢰성모형에 대한 비교연구)

  • Shin, Hyun Cheul;Kim, Hee Cheul
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.4
    • /
    • pp.19-27
    • /
    • 2014
  • Software reliability in the software development process is an important issue. Software process improvement helps in finishing with reliable software product. Infinite failure NHPP software reliability models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, proposes the reliability model with log type mean value function (Musa-Okumoto and log power model), which made out efficiency application for software reliability. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method, model selection based on mean square error (MSE) and coefficient of determination($R^2$), for the sake of efficient model, was employed. Analysis of failure using real data set for the sake of proposing log type mean value function was employed. This analysis of failure data compared with log type mean value function. In order to insurance for the reliability of data, Laplace trend test was employed. In this study, the log type model is also efficient in terms of reliability because it (the coefficient of determination is 70% or more) in the field of the conventional model can be used as an alternative could be confirmed. From this paper, software developers have to consider the growth model by prior knowledge of the software to identify failure modes which can be able to help.

The Property of Software Optimal Release Time Based on Log Poission Execution Time Model Using Interval Failure Times (고장 간격 수명 시간을 이용한 로그 포아송 실행 시간 모형의 소프트웨어 최적방출시간 특성에 관한 연구)

  • Sin, Hyun-Cheul;Kim, Hee-Cheul
    • Convergence Security Journal
    • /
    • v.10 no.1
    • /
    • pp.55-61
    • /
    • 2010
  • It is of great practical interest to deciding when to stop testing a software system in development phase and transfer it to the user. This decision problem called an optimal release policies. In this paper, because of the possibility of introducing new faults when correcting or modifying the software, we were researched release comparative policies which based on infinite failure NHPP model and types of interval failure times. The policies which minimize a total average software cost of development and maintenance under the constraint of satisfying a software reliability requirement can optimal software release times. In a numerical example, applied data which were patterns, if intensity function constant or increasing, decreasing, estimated software optimal release time.

The Comparative Study of Software Optimal Release Time Based on Extreme Distribution Property (극값분포 특성에 근거한 소프트웨어 최적 방출시기에 관한 비교)

  • Kim, Hee-Cheul
    • Journal of IKEEE
    • /
    • v.15 no.1
    • /
    • pp.43-48
    • /
    • 2011
  • Decision problem called an optimal release policies, after testing a software system in development phase and transfer it to the user, is studied. The infinite failure non-homogeneous Poisson process models presented and propose an optimal release policies of the life distribution applied extreme distribution which used to find the minimum (or the maximum) of a number of samples of various distributions. In this paper, discuss optimal software release policies which minimize a total average software cost of development and maintenance under the constraint of satisfying a software reliability requirement. In a numerical example, extreme value distribution as another alternative of existing the Poisson execution time model and the log power model can be verified using inter-failure time data.

A Study on the Property Analysis of Software Reliability Model with Shape Parameter Change of Finite Fault NHPP Erlang Distribution (유한고장 NHPP 어랑분포의 형상모수 변화에 따른 소프트웨어 신뢰성 모형의 속성 분석에 관한 연구)

  • Min, Kyung Il
    • Journal of Information Technology Applications and Management
    • /
    • v.25 no.4
    • /
    • pp.115-122
    • /
    • 2018
  • Software reliability has the greatest impact on computer system reliability and software quality. For this software reliability analysis, In this study, we compare and analyze the trends of the properties affecting the reliability according to the shape parameters of Erlang distribution based on the finite fault NHPP. Software failure time data were used to analyze software failure phenomena, the maximum likelihood estimation method was used for parameter estimation. As a result, it can be seen that the intensity function is effective because it shows a tendency to decrease with time when the shape parameters a = 1 and a = 3. However, the pattern of the mean value function showed an underestimation pattern for the true values when the shape parameters a = 1 and a = 2, but it was found to be more efficient when a = 3 because the error width from the true value was small. Also, in the reliability evaluation of the future mission time, the stable and high trend was shown when the shape parameters a = 1 and a = 3, but on the contrary, when a = 2, the reliability decreased with the failure time. Through this study, the property of finite fault NHPP Erlang model according to the change of shape parameter without existing research case was newly analyzed, and new research information that software developers can use as basic guideline was presented.

The Comparative Study of Software Optimal Release Time Based on Log-Logistic Distribution (Log-Logistic 분포 모형에 근거한 소프트웨어 최적방출시기에 관한 비교연구)

  • Kim, Hee-Cheul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.7
    • /
    • pp.1-9
    • /
    • 2008
  • In this paper, make a study decision problem called an optimal release policies after testing a software system in development phase and transfer it to the user. When correcting or modifying the software, because of the possibility of introducing new faults when correcting or modifying the software, infinite failure non-homogeneous Poisson process models presented and propose an optimal release policies of the life distribution applied log-logistic distribution which can capture the increasing! decreasing nature of the failure occurrence rate per fault. In this paper, discuss optimal software release policies which minimize a total average software cost of development and maintenance under the constraint of satisfying a software reliability requirement. In a numerical example, after trend test applied and estimated the parameters using maximum likelihood estimation of inter-failure time data, make out estimating software optimal release time.

  • PDF

Assessing Infinite Failure Software Reliability Model Using SPC (Statistical Process Control) (통계적 공정관리(SPC)를 이용한 무한고장 소프트웨어 신뢰성 모형에 대한 접근방법 연구)

  • Kim, Hee Cheul;Shin, Hyun Cheul
    • Convergence Security Journal
    • /
    • v.12 no.6
    • /
    • pp.85-92
    • /
    • 2012
  • There are many software reliability models that are based on the times of occurrences of errors in the debugging of software. It is shown that it is possible to do asymptotic likelihood inference for software reliability models based on infinite failure model and non-homogeneous Poisson Processes (NHPP). For someone making a decision about when to market software, the conditional failure rate is an important variables. The finite failure model are used in a wide variety of practical situations. Their use in characterization problems, detection of outliers, linear estimation, study of system reliability, life-testing, survival analysis, data compression and many other fields can be seen from the many study. Statistical Process Control (SPC) can monitor the forecasting of software failure and there by contribute significantly to the improvement of software reliability. Control charts are widely used for software process control in the software industry. In this paper, we proposed a control mechanism based on NHPP using mean value function of log Poission, log-linear and Parto distribution.

The Assessing Comparative Study for Statistical Process Control of Software Reliability Model Based on Musa-Okumo and Power-law Type (Musa-Okumoto와 Power-law형 NHPP 소프트웨어 신뢰모형에 관한 통계적 공정관리 접근방법 비교연구)

  • Kim, Hee-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.6
    • /
    • pp.483-490
    • /
    • 2015
  • There are many software reliability models that are based on the times of occurrences of errors in the debugging of software. It is shown that it is possible to do likelihood inference for software reliability models based on finite failure model and non-homogeneous Poisson Processes (NHPP). For someone making a decision about when to market software, the conditional failure rate is an important variables. The infinite failure model are used in a wide variety of practical situations. Their use in characterization problems, detection of outlier, linear estimation, study of system reliability, life-testing, survival analysis, data compression and many other fields can be seen from the many study. Statistical process control (SPC) can monitor the forecasting of software failure and thereby contribute significantly to the improvement of software reliability. Control charts are widely used for software process control in the software industry. In this paper, proposed a control mechanism based on NHPP using mean value function of Musa-Okumo and Power law type property.

The Assessing Comparative Study for Statistical Process Control of Software Reliability Model Based on Logarithmic Learning Effects (대수형 학습효과에 근거한 소프트웨어 신뢰모형에 관한 통계적 공정관리 비교 연구)

  • Kim, Kyung-Soo;Kim, Hee-Cheul
    • Journal of Digital Convergence
    • /
    • v.11 no.12
    • /
    • pp.319-326
    • /
    • 2013
  • There are many software reliability models that are based on the times of occurrences of errors in the debugging of software. Software error detection techniques known in advance, but influencing factors for considering the errors found automatically and learning factors, by prior experience, to find precisely the error factor setting up the testing manager are presented comparing the problem. It is shown that it is possible to do asymptotic likelihood inference for software reliability models based on infinite failure model and non-homogeneous Poisson Processes (NHPP). Statistical process control (SPC) can monitor the forecasting of software failure and thereby contribute significantly to the improvement of software reliability. Control charts are widely used for software process control in the software industry. In this paper, we proposed a control mechanism based on NHPP using mean value function of logarithmic hazard learning effects property.