• Title/Summary/Keyword: Infiltration-filtration

Search Result 39, Processing Time 0.025 seconds

A Primary Study on the Potential of Floodplain Filtration in Korea (우리나라에서 홍수터여과의 가능성에 대한 기초조사)

  • Choi, Myung-Ho;Kim, Kyeong-Soo;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.70-78
    • /
    • 2009
  • Floodplain areas of major South Korean rivers were determined by analyzing topographical maps and hydraulic properties of floodplain soil were measured using disc tension infiltrometer. To assess the possibility of treating secondary effluents of municipal wastewater with floodplain soil, a computer code for the analysis of unsaturated flow in soil was employed along with searches conducted in the literature. Based on the data generated, an estimate of total floodplain filtration capacity in Korea was obtained. The results of our study reveal that Korean floodplains have surface soil that is adequate for treating water. Moreover, the distributions of floodplains are substantial over the entire reaches of the rivers, indicating that the conditions are favorable for floodplain filtration as additional treatment of secondary effluent. The capacity of floodplain filtration in Korea is circa 182,000,000 $m^3$/day and most of the rivers are estimated to have enough capacity of floodplain filtration to meet all the secondary effluent, indicating that this technology may be expected to make further improvements on river water quality. Furthermore, this method may also be applied to better the source-water quality for drinking water.

Development Hybrid Filter System for Applicable on Various Rainfall (다양한 강우사상에 대응 가능한 침투여과형 기술개발)

  • Choi, Jiyeon;Kim, Soonseok;Lee, Soyoung;Nam, Guisook;Cho, Hyejin;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.535-541
    • /
    • 2013
  • The urbanization affects significantly on a natural water circulation system by increasing the imperviousness rate. It is also negatively affecting on urban temperature, environmental pollution, water quality, and aqua-ecosystems. The Korea MOE (Ministry of Environment) adapted a new environmental policy in order to reduce the impact of urbanization, which is the Green Stormwater Infrastructure (GSI) program. The GSI can be achieved by protecting conservable green spaces, enlarging more green spaces, and constructing more permeable pavements. The GSI is including many different techniques such as bioretention, rain garden, infiltration trench and so on. Also It is the infrastructures using natural mechanisms of soils, microorganisms, plants and animals on a water circulation system and pollutant reduction. In this research, a multi functional GSI technology with infiltration-filtration mechanisms has been developed and performed lab-scale tests to evaluate the performances about infiltration rate restoration and pollutant reduction. The most of pollutants including metals, organics and particulates were reduced about 50~90% due to water infiltration and storage functions. The clogging was found when the TSS loading rate was reached on $8.3{\sim}9.0kg/m^2$, which value is higher than the values in literatures. It means the new technology can show high performances with low maintenances.

Evaluation of the Volume and Pollutant Reduction in an Infiltration and Filtration Facility with Varying Rainfall Conditions (침투여과시설의 강우계급에 따른 유량 및 비점오염물질 저감 효과 분석)

  • Yu, Gigyung;Choi, Jiyeon;Kang, Hee-Man;Kim, Lee-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.1
    • /
    • pp.30-35
    • /
    • 2016
  • Urban areas generate large amounts of stormwater and non-point source (NPS) pollutants during rainfall events. These are caused by various land use runoffs, vehicular and human activities and increased impervious cover. The increased runoff and NPS pollutants cause water quality deterioration in the receiving waters and adversely affect the aqua-ecosystem. These environmental impacts could be reduced through the application of low impact development (LID) techniques. In Korea, more than 80% of the total rainfall occurs in summer and most of these were 10 mm or less. Therefore, if the LIDs developed were able to cope with rainfall of 10 mm and below, NPS management could be efficiently conducted. This research was performed to determine the effect of varying amounts of rainfall on the performance capability of an established infiltration and filtration facility (IF facility) that can be applied to Korea's common rainfall ranges. The IF facility area was 1.75% of the catchment area, however the facility treated more than 40% and 60% runoff volume and pollutant reduction respectively for a 10 mm rainfall. Lastly, higher volume and pollutant reduction could be attained when the LID area was at least 2% of the entire catchment.

Borehole radar monitoring of infiltration processes in a vadose zone

  • Jang, Han-Nu-Ree;Park, Mi-Kyung;Kuroda, Seiichiro;Kim, Hee-Joon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.313-316
    • /
    • 2007
  • Ground-penetrating radar (GPR) is an effectiveness tool for imaging spatial distribution of hydrogeologic parameters. An artificial groundwater recharge test has been conducted in Nagaoka City in Japan, and time-lapse crosshole GPR data were collected to monitor infiltration processes in a vadose zone. Since radiowave velocities in a vadose zone are largely controlled by variations in water content, the increase in traveltimes is interpreted as an increase in saturation in the test zone. We use a finite-difference time-domain method in two-dimensional cylindrical coordinates to simulate field results. Numerical modeling successfully reproduces the major feature of velocity changes in the filtration process.

  • PDF

Application and Maintenance Strategies for Eco-Friendly Facilities in Landscape Trees Nurseries

  • Young Sun Seok;O Man Kwon;Yun Eui Choi
    • Journal of Forest and Environmental Science
    • /
    • v.40 no.2
    • /
    • pp.151-165
    • /
    • 2024
  • Recently, as the number of landscaping plant nurseries have increased, environmental problems such as topographical damage due to indiscriminate changes in land use, increased non-point pollution, and increased impervious areas are also occurring. In this study, we propose eco-friendly facilities and a detailed maintenance manual that can enhance the eco-friendliness and scenic beauty of landscaping plant nurseries that are increasingly located near cities. By exploring previous reports on eco-friendly facilities and related laws, we cataloged the types of eco-friendly facilities, and by referring to examples of eco-friendly facilities introduced in overseas cases and the environmental functions of agriculture, we cataloged the types of eco-friendly facilities suitable for introduction in plant nurseries. The selected facilities are rain gardens, tree boxes, vegetated filter beds, bio-retention, infiltration trench, infiltration tanks, permeable pavements, and sand filtration systems. The maintenance tasks of eco-friendly facilities were categorized and management plans were proposed, which is expected to be utilized as a basic data to prepare eco-friendly space planning and operation management plans when creating a landscape plant nurseries in the future.

A Study on Stormwater Retention and Infiltration Ponds System for Improvement of Water Circulation and Increase of Bio-diversity (물 순환 개선 및 생물다양성 증진을 위한 우수저류 및 침투연못 시스템에 관한 연구)

  • Kim, Kwi-Gon;Kim, Hyea-Ju;Lee, Jae-Chul;Kim, Jong-Sub;Jang, Hey-Young;Son, Sam-Gi
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.2
    • /
    • pp.53-65
    • /
    • 2000
  • The objectives of this study are to develop a stormwater management system that would contribute to improving water circulation, recycling storm water and promoting biodiversity in urban areas, to apply the system in an actual site, and to verify its effectiveness in order to generate a stormwater management system applicable in Korea. This study reviewed former researches and case studies, categorized stormwater management system into pre-treatment, retention and infiltration phases, and analyzed the strength and weakness of the techniques by synthesizing unit techniques of each stage. As a result, the process of the stormwater management system includes the following phases: 1) a rubble filtration layer; 2) a retention pond; 3) a infiltration pond; and 4) a stormwater retention pool (recirculation and recycling). Then, an empirical study to design and create the generated system according to the features of a site and to verify its effectiveness was conducted. The future study direction is to verify the effectiveness of the developed stormwater retention and infiltration ponds. To this end, it is planned to perform hydrological monitoring using automatic measuring equipment and monitoring on habitat bases and the biota living on the base. Based on its outcome, the applied model would be refined and improved to develop an alternative stormwater management system that would allow to achieve the improvement of urban water circulation, increase of biodiversity and efficient use of water resources.

  • PDF

The Spontaneous Infiltration Mechanism of Molten Al Alloy to AI$_2$O$_3$ Preform (AI$_2$O$_3$ Preform에 대한 용융 Al 합금의 자발적 침윤 기구)

  • 이동윤;박상환;이동복
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.7
    • /
    • pp.685-690
    • /
    • 1998
  • The wetting behavior and the characteristic of spontaneous infiltration of pure Al and Al-(Si)-Mg alloys on {{{{ { {Al }_{ 2} O}_{3 } }} in vacuum argon and nitrogen atmosphere were investigated to find out the spontaneous in-filtration mechanism. The wetting of molten Al and Al alloys on {{{{ { {Al }_{ 2} O}_{3 } }} was only possible in cacuum at-mosphere but the sponataneous infiltration of molten Al-(Si)-Mg alloys was successfully made on {{{{ { {Al }_{ 2} O}_{3 } }} pre-form in nitrogen atmoshpere. The difference of wettability and spontaneous infiltration of molten Al and Al alloys on {{{{ { {Al }_{ 2} O}_{3 } }} were found to be related to formation of the Mg-N compound coated layer on {{{{ { {Al }_{ 2} O}_{3 } }} particles which was believd to increase wettability of molten Al alloys on {{{{ { {Al }_{ 2} O}_{3 }.

  • PDF

Change of Slope Stability due to Slope Inclination and Surface Conditions (사면경사와 표면 조건에 따른 사면안정성 해석)

  • Hwang, Young-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.2
    • /
    • pp.5-11
    • /
    • 2015
  • Slope stability is affected by duration of precipitation, probable rainfall intensity, unsaturated soil property, and soil strength. The recent analyses of slope stability tend to include unsaturated analysis based on infiltration properties of soil, while researches of unsaturated soil slope tend to include the analysis of deformation and stress distribution of soil over time. However, infiltration property of unsaturated soil slope depends not only on intensity or duration of precipitation, but also on relief and surface condition, which is not considered in status quo. This research uses hydrologic model parameters of soil in order to consider effects of inclination on filtration, and carries out analysis of unsaturated soil slope to confirm the effects according to slope inclination and surface condition. In conclusion, using slope stability analysis, the need to consider infiltration rate according to inclination and surface condition was confirmed even under the same precipitation conditions.

A Study on the Design of Artificial Stream for Riverbed Filtration in Multi-purpose Filtration Pond (다목적 여과저류지에서의 하상여과용 인공하천 설계연구)

  • Sohn, Dong-Hoon;Park, Jae-Young;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.7
    • /
    • pp.536-543
    • /
    • 2011
  • In order to find the best design of artificial stream for the riverbed filtration in multi-purpose filtration pond, a mathematical model was developed employing the energy line and the Manning's formula and was analyzed by the Euler's technique. Various design factors were investigated through scenario analyses of the artificial stream using the model. Results showed that the appropriate slope of the stream bottom was 2/10,000 and the appropriate infiltration rate at the streambed was $2.5m^3/m^2-day$ for the pond with the area of 100 ha, and that the Manning's roughness coefficient in this case was expected to be about 0.026 and the maximum water-depth was less than 1m. It was also shown that the longer the artificial stream the more advantageous it became for the riverbed filtration. Furthermore, results showed that it was not an efficient way to prevent clogging of the streambed by increasing the flow velocity of the stream and that the performance was higher near a weir with a large head drop.

A Study on Efficient Improvement Method of Rainwater Utilization Facilities in Jeju Island (제주지역 빗물이용시설의 효율적 개선방안 연구)

  • Park, Won-Bae;Moon, Deok-Cheol;Koh, Gi Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.6
    • /
    • pp.1-8
    • /
    • 2012
  • This study is to suggest a few efficient ways of rainwater utilization, through monitoring and analyzing 143 rainwater storage systems and 110 artificial recharge systems, which are installed in the recommended facilities by law, among the rainwater harvesting systems in Jeju Island. In the case that catchment facilities are damaged, rainwater could be contaminated by leaves and debris so that the rates of rainwater usages come to be lower. It is possible that contaminated rainwater could contaminate artificial recharge wells or rainwater discharging out of the rainwater harvesting system could result in flood and damage for the downgradient area. For maintaining high quality of rainwater and increasing rainwater utilization rate, it is necessary to install screening facilities and purification plant functioning precipitation and filtration. Also, in order to efficiently preclude the overflowing rainwater exceeding storage capacity, it is recommended to associate rainwater storage tanks with artificial recharge well or infiltration trench facilities.