• 제목/요약/키워드: Infiltration analysis

검색결과 755건 처리시간 0.028초

초기 함수량을 고려한 침투 모형의 유도 (Derivation of an Infiltration Model at the Non-Zero Initial Moisture Condition)

  • 박햇님;조원철
    • 한국수자원학회논문집
    • /
    • 제35권3호
    • /
    • pp.285-294
    • /
    • 2002
  • 침투는 수문 순환에서 물의 분배를 결정하는 중요한 과정 중의 하나이며, 이에 대해 다양한 이론들과 방법들이 제시되었으나 이들은 주로 침투능보다 큰 강우에 대해서만 적용이 가능하였다. Diskin과 Nazimov (1975, 1996)의 연구에서는 두 개의 요소로 구성된 개념적 침투 모형을 제시하여 단순히 시간의 함수로서 침투를 나타내는 것보다 합리적으로 침투 과정에 접근하였다. 본 연구에서는 이러한 침투 과정에서 초기 함수량을 추가적으로 고려하여 기존의 개념적 침투 모형을 개선하였다. 다양한 초기 함수량 조건에 대해 침투능 곡선의 변화를 분석한 결과 본 모형에 의해 보다 합리적으로 침투 과정에 접근할 수 있음을 판단할 수 있었다. 또한 다양한 토양형에 대해 호우 사상-수막 시간의 관계를 고찰한 결과 침투 과정에 대한 본 모형의 적용성이 상당히 높게 나타남을 알 수 있었다.

Early Detection of Intravenous Infiltration Using Multi-frequency Bioelectrical Impedance Parameters: Pilot Study

  • Kim, Jae-Hyung;Shin, Beum-Joo;Baik, Seung-Wan;Jeon, Gye-Rok
    • 센서학회지
    • /
    • 제26권1호
    • /
    • pp.15-23
    • /
    • 2017
  • In this study, bioelectrical impedance analysis, which has been used to assess an alteration in intracellular fluid (ICF) of the body, was applied to detect intravenous infiltration. The experimental results are described as follows. Firstly, when infiltration occurred, the resistance gradually decreased with time and frequency i.e., the resistance decreased with increasing time, proportional to the amount of infiltrated intravenous (IV) solution. At each frequency, the resistance gradually decreased with time, indicating the IV solution (also blood) accumulated in the extracellular fluid (ECF) (including interstitial fluid). Secondly, the resistance ratio started to increase at infiltration, showing the highest value after 1.4 min of infiltration, and gradually decreased thereafter. Thirdly, the impedance ($Z_C$) of cell membrane decreased significantly (especially at 50 kHz) during infiltration and gradually decreased thereafter. Fourthly, Cole-Cole plot indicated that the positions of (R, $X_C$) shifted toward left owing to infiltration, reflecting the IV solution accumulated in the ECF. The resistance ($R_0$) at zero frequency decreased continuously over time, indicating that it is a vital impedance parameter capable of detecting early infiltration during IV infusion. Finally, the mechanism of the current flowing through the ECF, cell membrane, and ICF in the subcutaneous tissues was analyzed as a function of time before and after infiltration, using an equivalent circuit model of the human cell. In conclusion, it was confirmed that the infiltration could be detected early using these impedance parameters during the infusion of IV solution.

Impedance Parameter Variations at Intravenous (IV) Infiltration Using Bioelectrical Impedance: A Pilot Study

  • Kim, Jaehyung;Lee, Mansup;Baik, Seungwan;Kim, Gunho;Hwang, Youngjun;Jeon, Gyerok
    • 한국멀티미디어학회논문지
    • /
    • 제20권10호
    • /
    • pp.1678-1688
    • /
    • 2017
  • Infiltration is one of detrimental problems occurring in nursing or medical settings. Early detection of infiltration is essential to minimize the risk of injury from infiltration. To perform a preliminary study on the point of care and automated infiltration detection system, bioelectrical impedance was investigated using bioelectrical impedance analyzer. We would like to report experimental results that allow impedance parameters to effectively distinguish infiltration. Electrodes were attached to both sides of the transparent dressing on the fusion site where IV solution was being infused. Then, impedance parameters before and after infiltration were measured as a function of time and frequency. The experimental results are as follows. After infiltration was intentionally induced by puncturing the vein wall with a needle, the resistance gradually decreased with time. That is, when an alternating current having a frequency of 20 kHz was applied to the electrodes, the resistance gradually decreased with time, reflecting the accumulation of IV solution in the extracellular fluid since the current could not pass through the cell membrane. Impedance parameters and equivalent circuit model for human cell were used to examine the mechanism of current flow before and after infiltration, which could be used for early detection of infiltration.

유도침투량의 정량화를 위한 해석모형과 수치모형의 분석 (Analysis of Analytical Models and Numerical Model for Evaluating Induced Infiltration Rate)

  • 이도훈;이은태
    • 한국수자원학회논문집
    • /
    • 제32권3호
    • /
    • pp.301-310
    • /
    • 1999
  • 본 연구에서는 하천-대수층 계에서 수치모형과 두 종류의 해석모형을 적용하여 유도침투량 곡선을 유도하여 비교하였으며, 투수계수의 이방성비 및 지하수 유입 방향이 유도침투량 산정에 미치는 영향을 평가하였다. 유도침투량 곡선은 단순한 그래프 형태로 표시되며, 유도침투량, 양수량, 하천과 우물사이의 거리, 유동 지하수 유입량 등의 4가지 인자만을 포함하기 때문에 유도침투량의 결정에 유용하게 적용될 수 있다. 검토된 조건 아래에서 Wilson 해석모형과 FEWA 수치모형의 유도침투량 곡선은 근사적으로 일치하였으며, 투수게수의 이방성비는 유도침투량에 큰 영향을 미치는 인자로 평가되었다. 본 연구에서 적용된 방법과 도출된 결과들은 유도침투 현상을 이해하는데 도움이 되며, 양수우물의 계획 및 설계, 용수공급 우물의 수질관리에 필요한 유도침투량과 양수량의 최적 결정에 적용될 수 있다.

  • PDF

Modeling of shallow landslides in an unsaturated soil slope using a coupled model

  • Kim, Yongmin;Jeong, Sangseom
    • Geomechanics and Engineering
    • /
    • 제13권2호
    • /
    • pp.353-370
    • /
    • 2017
  • This paper presents a case study and numerical investigation to study the hydro-mechanical response of a shallow landslide in unsaturated slopes subjected to rainfall infiltration using a coupled model. The coupled model was interpreted in details by expressing the balance equations for soil mixture and the coupled constitutive equations. The coupled model was verified against experimental data from the shearing-infiltration triaxial tests. A real case of shallow landslide occurred on Mt. Umyeonsan, Seoul, Korea was employed to explore the influence of rainfall infiltration on the slope stability during heavy rainfall. Numerical results showed that the coupled model accurately predicted the poromechanical behavior of a rainfall-induced landslide by simultaneously linking seepage and stress-strain problems. It was also found that the coupled model properly described progress failure of a slope in a highly transient condition. Through the comparisons between the coupled and uncoupled models, the coupled model provided more realistic analysis results under rainfall. Consequently, the coupled model was found to be feasible for the stability and seepage analysis of practical engineering problems.

배면침투를 고려한 사면안정해석 (Stability Analysis of Slope Considering Infiltration of Behind Ground)

  • 신종호;김학문;장경준;채성은
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.1060-1067
    • /
    • 2009
  • Previous research on the slope failure has mainly reported that most of the slope failures occur due to surface rainfall infiltration in the rainy season. A slope of which surface is protected by shotcrete or plants, can also fail due to increase in pore water pressure from the ground water flow beneath the surface, rather than from the surface. In this study such case of slope behavior is investigated using the model test and numerical method including strength reduction method. Hydraulic boundary conditions of the slopes is considered using coupled numerical scheme. The failure mechanism of the slope is investigated and the effect of pore water pressure on slope safety is identified. Increase in pore water pressure due to lateral infiltration has significantly reduced the stability of slope.

  • PDF

강우시 성토사면의 열차운전규제기준 (Rail Transport Operation Control for Railway Embankment under rainfall)

  • 김현기;신민호;최찬용
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.225-232
    • /
    • 2009
  • Infiltration of rainfall causes railway slopes to be unstable and may result in failure. Basic relationship between the rainfall and stability of railway embankment is defined to analyze its stability by rainfall. An experimental study for defining of infiltration rate of rainfall into slope is conducted in the lab. The results of Rainfall infiltration show that rainfall infiltration is not equal to infiltration as like reservoir because rate of rainfall infiltration is controlled by slope angle. Based on these results, boundary condition of rainfall is altered and various numerical analysis are performed. The variation of shear strength, the degree of saturation and pore-water pressure for railway slope during rainfall can be predicted and the safety factor of railway slope can be expressed as the function of rainfall amount, namely rainfall index. And suggested rainfall index is compared with the rail transport operation control which is used in KORAIL. It is judged that this rainfall index can be a good tool for the rail-transport operation control.

  • PDF

공동주택 침기의 불확실성 분석 (Infiltration in Residential Buildings under Uncertainty)

  • 현세훈;박철수;문현준
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.369-374
    • /
    • 2006
  • Quantification of infiltration rate is an important issue in HVAC system design. The infiltration in buildings depends on many uncertain parameters that vary with significant magnitude and hence, the results from standard deterministic simulation approach can be unreliable. The authors utilize uncertainty analysis In predicting the airflow rates. The paper presents relevant uncertain parameters such as meteorological data, building parameters (leakage areas of windows, doors, etc.), etc. Uncertainties of the aforementioned parameters are quantified based on available data from literature. Then, the Latin Hypercube Sampling (LHS) method was used for the uncertainty propagation. The LHS is one of the Monte Carlo simulation techniques that is suited for our needs. The CONTAMW was chosen to simulate infiltration phenomena in a residential apartment that is typical of residential buildings in Korea. It will be shown that the uncertainty propagating through this process is not negligible and may significantly influence the prediction of the airflow rates.

  • PDF

도시유역에서 침투시설의 우수유출저감효과 분석 (An Analysis of Runoff Reduction Effect of Infiltration Facilities in Urban Area)

  • 이재준;김호년;곽창재;이상원
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.628-631
    • /
    • 2007
  • One of the structural measures for the peak flow reduction is infiltration facilities. There are many types in infiltration facilities - infiltration basin, trench, bed, porous pavement, percolated subdrain, dry well. In this study runoff reduction effect of infiltration trench is analyzed by WinSLAMM. Runoff reduction effect is investigated by each design rainfall and temporal pattern of rainfall particularly. The biggest reduction is shown in Yen and Chow's temporal pattern of design rainfall and the smallest reduction is shown in Huff's first quartile pattern. Runoff reduction rate is presented about 6 to 14 percentage, and the larger return period, the smaller runoff reduction rate.

  • PDF

Fluid Infiltration Effect on Breakdown Pressure in Laboratory Hydraulic Fracturing Tests

  • Diaz, Melvin B.;Jung, Sung Gyu;Lee, Gyung Won;Kim, Kwang Yeom
    • 지질공학
    • /
    • 제32권3호
    • /
    • pp.389-399
    • /
    • 2022
  • Observations on the influence of the fluid infiltration on the breakdown pressure during laboratory hydraulic fracturing tests, along with an analysis of the applicability of the breakdown pressure prediction for cylindrical samples using Quasi-static and Linear Elastic Fracture Mechanics approaches were carried out. These approaches consider fluid infiltration through the so-called radius of fluid infiltration or crack radius, a parameter that is not a material property. Two sets of tests under pressurization rate controlled and injection rate controlled tests were used to evaluate the applicability of these methods. The difficulty of the estimation of the radius of fluid infiltration was solved by back calculating this parameter from an initial set of tests, and later, the obtained relationships were used to predict breakdown pressures for a second set of tests. The results showed better predictions for the injection rate than for the pressurization rate tests, with average errors of 3.4% and 18.6%, respectively. The larger error was attributed to differences in the testing conditions for the pressurization rate tests, which had different applied vertical pressures. On the other hand, for the tests carried out under constant injection rate, the Linear Elastic Fracture Mechanics solution reported lower errors compared to the Quasi-static solution, with values of 3% and 3.8%, respectively. Moreover, a sensitivity analysis illustrated the influence of the radius of fluid penetration or crack radius and the tensile strength on the breakdown pressure, suggesting a need for a careful estimation of these values. Then, the calculation of breakdown pressure considering fluid infiltration in cylindrical samples under triaxial conditions is possible, although larger data sets are desirable to validate and derive better relations.