• Title/Summary/Keyword: Infiltration Trenches

Search Result 14, Processing Time 0.026 seconds

Impacts on water-cycle by land use change and effects of infiltration trenches in Asan New town (토지이용 변화가 물순환에 미치는 영향과 침투트렌치 설치 효과 분석 - A 신도시 지구를 중심으로 -)

  • Hyun, Kyoung-Hak;Lee, Jung-Min
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.6
    • /
    • pp.691-701
    • /
    • 2010
  • As the water-cycle is transformed by increasing of the impermeable area in process of urbanization, decentralized rainwater management facilities(infiltration, harvesting and retention facilities) as source control are considered to be a method of restoring water-cycle of urban and reducing runoff. SWMM model was used to analyse the change of water-cycle structure before and after development in A new town watershed. Modified SWMM code was developed to apply infiltration facilities. The modified SWMM was used to analyse the change of water-cycle before and after infiltration trench setup in AJ subcatchment. Changes of the impervious area by development and consequent increase in runoff were analyzed. These analyses were performed by a day rainfall during ten years from 1998 to 2007. According to the results, surface runoff increased from 51.85% to 65.25 %, and total infiltration volume decreased from 34.15 % to 21.08 % in A newtown watershed. If more than 80 infiltration trenches are constructed in AJ subcatchment, the low flow and the drought flow increases by around 47%, 44%, separately. The results of this study, infiltration trench is interpreted to be an effective infiltration facility to restore water-cycle in new town.

Analysis of Infiltration Trench Facility for Runoff Reduction Effect (침투트렌치 시설의 유출저감 효과 분석)

  • Yeon, Jong Sang;Jang, Young Su;Shin, Hyun Suk;Kim, Eung Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5813-5819
    • /
    • 2014
  • LID planning and application has been actively developed to reduce the runoff volume at increased impervious areas due to rapid urbanization. In this study, a performance and applicability evaluation was performed in an infiltration trench using the SWMM model, based on the experimental conditions for infiltration trenches. The infiltration trench application area was applied to 5~15% of the drainage area. The SWMM results of discharge and the BOD reduction efficiency were analyzed at a peak discharge of 45.7~61.9%, total discharge of 47.2~62.3%, and BOD load of 52.3~55.3. The discharge and BOD was estimated to be 12~24% higher and 37~38% smaller than the experimental results. This study can help in the application and performance evaluation of infiltration trenches.

The Effect of Impermeable Surface and Rainwater Infiltration Facilities on the Runoff pH of Housing Complexes (빗물 유출면 및 빗물 침투시설이 주거단지 유출빗물의 pH에 미치는 영향)

  • Hyun, Kyoung-Hak;Choi, Joung-Joo;Choung, Youn-Kyoo
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.1
    • /
    • pp.39-47
    • /
    • 2010
  • In order to examine the effect of impermeable surface (rooftop, outdoor parking lot) and rainwater infiltration facilities on runoff pH, pH was measured. pH measurement spots were splash blocks accepted roof runoff of 3 sites, infiltration boxes and trenches accepted parking lot runoff and plastic rainwater harvesting facility accepted roof runoff. These measurements were operated at 3 housing complexes from 2006 to 2009. The rainwater runoff pH was influenced by the quality of the runoff surface material (concrete), the age of the building, waterproofing methods according to each housing site, antecedent rainfall conditions and others. Rain garden, infiltration boxes and trenches decreased the alkalinity of runoff by detention and infiltrating the roof and outdoor parking lot runoff. These results mean that decentralized rainwater management facilities of housing complexes can reduce effect on the outskirt aquatic ecosystem by the accumulation of substances causing pH rising in the infiltration facilities and rain garden.

Experimental Study of Runoff Induced by Infiltration Trench (침투 트렌치로 인한 유출 양상의 실험 연구)

  • Lee, Sangho;Cho, Heeho;Lee, Jungmin;Park, Jaehyun
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.1
    • /
    • pp.107-117
    • /
    • 2008
  • Infiltration facilities are effective instruments to mitigate flood and can increase base runoff in urban watersheds. In order to analyze effects of infiltration trenches physical model experiments were conducted. The physical model facility consists of two soil tanks, artificial rainfall generators, tensiometers, and piezometers. The experiment was conducted by nine times and each case differed in rainfall intensity, rainfall duration and the type of ground surface. Measured quantities in the experiments are as follows: surface runoff, subsurface runoff, trench pipe runoff, groundwater level, water content, etc. The following resulted from the model experiment: The volume of subsurface runoff at trench watershed was maximum 78.3% compared with rainfall. This value is bigger than that of ordinary rate of subsurface runoff, and shows a groundwater recharge effect of trench. The time of runoff passing through the trench became earlier and the volume of runoff became larger with the increase of inflow into the trench, while trench exfiltration into ground became relatively smaller. The results of this study presented above show that infiltration trenches are effective instruments to increase base runoff during dry periods.

Analysis of Performance and Measurement of Water Contents for Road Substructures with an Infiltration Trench (침투도랑 인접도로 하부구조의 함수비 측정 및 공용성 분석)

  • Kong, Seokjun;Jung, Jongsuk;Yeon, Gyumin;Kim, In Tai
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.29-36
    • /
    • 2017
  • PURPOSES : This study mechanically analyzed the performance of road substructures with focus on infiltration trenches of pavement substructures. METHODS : Water contents and response times for precipitation of pavement substructures were investigated via sensors buried near the infiltration trench to measure water contents. RESULTS : The results of the water contents of pavement systems constructed with an infiltration trench yield levels that were slightly increased by approximately 2% compared to those measured from general pavement systems. This water content difference of 2% resulted in a decrease in service life of less than two years. CONCLUSIONS : Service life reduction due to an infiltration trench is minimal, particularly when the trench is installed with proper caution.

Decision Support System for Determination of Types and Locations of Low Impact Development Practices

  • Abdulai, Patricia Jitta;Song, Jae Yeol;Chung, Eun-Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.181-181
    • /
    • 2017
  • Low impact development (LID) practices has become important to mitigate the damage from natural disasters in urban areas. Thereby many hydrological simulation models can simulate the hydrological impact of LID practices. However, commonly used models are not able to provide specific information to most users such as where LIDs should be placed and what kind of LID should be designed. In this study, a decision support system which can be used with the EPA's SWMM was developed for the determination of LID types and locations of LID practices, named Water Management Prioritization Module (WMPM), was applied to a urbanized university campus. Eight sub-catchments were selected as feasible candidate areas for the planning of LID practices. Pre-designated infiltration trenches and permeable pavements were applied to each selected sub-catchments, followed by peak and total runoffs comparison between before/after planning of LIDs. Moreover, TOPSIS, one of a multi-criteria decision analysis method was used in the procedure of selecting target sub-catchment areas and final prioritization of LID types and locations. As a result, sub-catchments S4 with permeable pavements and S16 with infiltration trenches has shown the most decrease in total and peak runoffs, respectively. Therefore, WMPM was found to be effective in determining the best alternative among various scenarios generated and simulated.

  • PDF

Design and Effectiveness Analysis of prefabricated Storage-type infiltration facility (조립식 저류형 침투시설의 설계 및 공간적용 효과분석)

  • Lee, Tae-Goo
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.103-108
    • /
    • 2016
  • Purpose: This study has developed economical and environmentally friendly storage type infiltration facilities that securing storage space inside the infiltration facility. It focused on preventing flooding rainfall as well as securing more groundwater through rainwater infiltration that is valuable for the dry season. In addition, this study compares the installation cost of the storage-type infiltration facility to the cost of the conventional rainwater management facilities to demonstrate the economic efficiency of the storage-based infiltration facility. Method: Unit infiltration of this facility is calculated and when it was applied to a certain capacity, the amount of countermeasures are proposed in case study. Result: Unit infiltration of it is $0.2541m^3/hr$ and un it Temporary storage of it is $1.054m^3/m$. As a result, the infiltration effect of this facility is $1.306m^3/hr$. The cost was approximately 30% reduction in time to apply the storage type infiltration facility as compared with the case to apply the existing penetration of the facilities. Since the penetration of the existing facilities is smaller than that and it has much securing volume to process the same the amount of countermeasures. Therefore, it is determined that the cost significantly increases in material cost part. On the other hand, storage type infiltration facility is installed a small quantity because Unit Temporary storage and infiltration are bigger than that. So, it occurred to reduce material and installation costs.

Cost-Effectiveness Analysis of Low-Impact Development Facilities to Improve Hydrologic Cycle and Water Quality in Urban Watershed (도시유역의 물순환 및 수질 개선을 위한 저영향개발 시설의 비용 효율 분석)

  • Choi, Jeonghyeon;Kim, Kyungmin;Sim, Inkyeong;Lee, Okjeong;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.3
    • /
    • pp.206-219
    • /
    • 2020
  • As urbanization and impermeable areas have increased, stormwater and non-point pollutants entering the stream have increased. Additionally, in the case of the old town comprising a combined sewer pipe system, there is a problem of stream water pollution caused by the combined sewer overflow. To resolve this problem, many cities globally are pursuing an environmentally friendly low impact development strategy that can infiltrate, evaporate, and store rainwater. This study analyzed the expected effects and efficiency when the LID facility was installed as a measure to improve hydrologic cycle and water quality in the Oncheon stream in Busan. The EPA-SWMM, previously calibrated for hydrological and water quality parameters, was used, and standard parameters of the LID facilities supported by the EPA-SWMM were set. Benchmarking the green infrastructure plan in New York City, USA, has created various installation scenarios for the LID facilities in the Oncheon stream drainage area. The installation and maintenance cost of the LID facility for scenarios were estimated, and the effect of each LID facility was analyzed through a long-term EPA-SWMM simulation. Among the applied LID facilities, the infiltration trench showed the best effect, and the bio-retention cell and permeable pavement system followed. Conversely, in terms of cost-efficiency, the permeable pavement systems showed the best efficiency, followed by the infiltration trenches and bio-retention cells.

Comparative Analysis of Groundwater-Ecosystem Service Value of Protected Horticulture Complex and Paddy Fields (시설원예단지와 논의 지하수 생태계서비스 가치 비교 분석)

  • Son, Jinkwan;Choi, Deuggyu;Lee, Siyoung;Kang, Donghyun;Park, Minjung;Yun, Sungwook;Kim, Namchoon;Kong, Minjae
    • Journal of Korean Society of Rural Planning
    • /
    • v.24 no.2
    • /
    • pp.47-58
    • /
    • 2018
  • Protected horticultural complexes would increase crop productivity but would adversely affect the groundwater recharge function in the area because the impervious area would increase. Further, they would limit the movement of living beings, affecting biodiversity. Therefore, this study evaluated the groundwater ecosystem services provided by protected horticultural complexes in terms of consistent utilization of water. The estimated amounts of groundwater loss obtained through quantitative assessment of groundwater infiltration showed that a higher impervious area results in higher losses. We, therefore, predict a much higher loss if similar changes in land use are realized on a nationwide scale. A plan to promote groundwater recharge in impervious areas is actively being discussed for urban areas; however, this plan is not yet applicable to farming areas. We consider it is essential to develop groundwater infiltration facilities for horticultural complexes, infiltration trenches, permeable pavements, surface water storage facilities, water purification facilities, etc. Further research and development of groundwater infiltration facilities is important for consistent utilization of water and the improvement of ecosystem services.

Analysis of Effectiveness for Water Cycle and Cost-Benefit according to LID Application Method in Environmentally-Friendly Village (친환경시범마을의 LID 적용에 따른 물순환 효과 및 비용편익 분석)

  • Baek, Jongseok;Lee, Sangjin;Shin, Hyunsuk;Kim, Hyungsan
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.57-66
    • /
    • 2018
  • Water disasters such as flash floods and inundation caused by localized heavy rainfall in urban areas have a large impact on climate change but are also closely related to the increase in impervious areas as pointed out in domestic and international studies. It is difficult to secure natural green areas in urban areas that have already been developed. So, urban regeneration can be expected using water management optimized with technologies to secure infiltration and storage capacity such as Low-Impact Development technology. In this study, the water cycle improvement ability was confirmed by applying the LID technology within the district unit plan of the environmentally friendly village, and the economic feasibility of LID application was analyzed by estimating the costs and benefits of installing the facilities. The site was planned to conserve sufficient green and plans for securing the watershed infiltration and storage capacity were formulated with the application of additional LID technology, such as infiltration trenches, rain barrels and permeable pavements. The LID design method applicable to the site was established, and the water balance of the watershed was analyzed through simulations of the SWMM model. The water circulation improvement effect was confirmed through the water balance analysis, and the cost-benefits were determined according to the estimation method, and the economic analysis was conducted. This study confirms that the investment of LID technology is economically feasible for the hydrological improvement effect of the housing complex.